Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 16, 2021

Core-modified porphyrins: novel building blocks in chemistry

  • Aleksey E. Kuznetsov EMAIL logo
From the journal Physical Sciences Reviews

Abstract

Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.


Corresponding author: Aleksey E. Kuznetsov, Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura, Santiago 7660251, Chile, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dolphin, D, editor. The porphyrins. New York: Academic; 1978, vol I–VII.Search in Google Scholar

2. Kadish, KM, Smith, KM, Guilard, R, editors. The porphyrin handbook. San Diego, CA: Academic Press; 2000.Search in Google Scholar

3. Hill, HAO, Sadler, PJ, Thomson, AJ, editors. Metal sites in proteins and models iron centres. Berlin, Heidelberg, Germany: Springer-Verlag; 1997.Search in Google Scholar

4. Bertini, I, Gray, HB, Lippard, SJ, Valentine, JS. Bioinorganic chemistry. CA: University Science Book; 1994.Search in Google Scholar

5. Severance, S, Hamza, I. Trafficking of heme and porphyrins in metazoan. Chem Rev 2009;109:4596–616. https://doi.org/10.1021/cr9001116.Search in Google Scholar PubMed PubMed Central

6. Kadish, KM, Smith, KM, Guilard, R, editors. Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine. Singapore: World Scientific; 2010, vol III.10.1142/7752-vol6Search in Google Scholar

7. Severance, S, Hamza, I. Trafficking of heme and porphyrins in Metazoa. Chem Rev 2009;109:4596–616. https://doi.org/10.1021/cr9001116.Search in Google Scholar

8. Ponka, P. Cell biology of heme. Am J Med Sci 1999;318:241–56. https://doi.org/10.1097/00000441-199910000-00004.Search in Google Scholar PubMed

9. Rodgers, KR. Heme-based sensors in biological systems. Curr Opin Chem Biol 1999;3:158–67. https://doi.org/10.1016/s1367-5931(99)80028-3.Search in Google Scholar

10. Wenger, RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000;203:1253–63. https://doi.org/10.1242/jeb.203.8.1253.Search in Google Scholar PubMed

11. Hoy, JA, Robinson, H, Trent, IJT, Kakar, S, Smagghe, BJ, Hargrove, MS. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport. J Mol Biol 2007;371:168–79. https://doi.org/10.1016/j.jmb.2007.05.029.Search in Google Scholar PubMed

12. Tsiftsoglou, AS, Tsamadou, AI, Papadopoulou, LC. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther 2006;111:327–45. https://doi.org/10.1016/j.pharmthera.2005.10.017.Search in Google Scholar PubMed

13. Wilson, MT, Reeder, BJ. Oxygen-binding haem proteins. Exp Physiol 2008;93:128–32. https://doi.org/10.1113/expphysiol.2007.039735.Search in Google Scholar PubMed

14. Yin, L, Wu, N, Curtin, JC, Qatanani, M, Szwergold, NR, Reid, RA, et al.. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 2007;318:1786–9. https://doi.org/10.1126/science.1150179.Search in Google Scholar PubMed

15. Faller, M, Matsunaga, M, Yin, S, Loo, JA, Guo, F. Heme is involved in microRNA processing. Nat Struct Mol Biol 2007;14:23–9. https://doi.org/10.1038/nsmb1182.Search in Google Scholar PubMed

16. Kaasik, K, Lee, CC. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 2004;430:467–71. https://doi.org/10.1038/nature02724.Search in Google Scholar PubMed

17. Kitanishi, K, Igarashi, J, Hayasaka, K, Hikage, N, Saiful, I, Yamauchi, S, et al.. Heme-binding characteristics of the isolated PAS-A domain of Mouse Per2, a transcriptional regulatory factor Associated with circadian rhythms. Biochem 2008;47:6157–68. https://doi.org/10.1021/bi7023892.Search in Google Scholar PubMed

18. Arnljots, K, Olsson, I. Myeloperoxidase precursors incorporate heme. J Biol Chem 1987;262:10430–3. https://doi.org/10.1016/s0021-9258(18)60977-9.Search in Google Scholar

19. Sheldon, RA, editor. Metalloporphyrins in catalytic oxidation. New York: Marcel Dekker; 1994.Search in Google Scholar

20. Leznoff, CC, Lever, ABP, editors. Phthalocyanines: properties and applications. New York: VCH Publishers; 1989, 1993, 1996, vol 1–4:1996.Search in Google Scholar

21. Lomova, TN, Klyueva, ME, Klyuev, MV. The mechanism of catalytic action of the coordination centres of catalase synthetic models. In: Lomova, TN, Zaikov, GE, editors. Chemical processes with participation of biological and related compounds. Leiden, The Netherlands: Koninklijke Brill NV; 2008:93–116 pp.10.1163/ej.9789004162105.i-422.20Search in Google Scholar

22. Mansuy, D. Activation of alkanes: the biomimetic approach. Coord Chem Rev 1993;125:129–41. https://doi.org/10.1016/0010-8545(93)85013-t.Search in Google Scholar

23. Che, C-M, Huang, J-S. Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis. Chem Commun 2009:3996–4015. https://doi.org/10.1039/b901221d.Search in Google Scholar PubMed

24. Mirkin, CA, Ratner, MA. Molecular electronics. Annu Rev Phys Chem 1992;43:719–54. https://doi.org/10.1146/annurev.pc.43.100192.003443.Search in Google Scholar

25. Holten, D, Bocian, DF, Lindsey, JS. Probing electronic communication in covalently linked Multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 2002;35:57–69. https://doi.org/10.1021/ar970264z.Search in Google Scholar PubMed

26. Senge, MO, Fazekas, M, Notaras, EGA, Blau, WJ, Zawadzka, M, Locos, OB, et al.. Nonlinear optical properties of porphyrins. Adv Mater 2007;19:2737–74. https://doi.org/10.1002/adma.200601850.Search in Google Scholar

27. Castano, AP, Mroz, P, Hamblin, MR. Photodynamic therapy and anti-tumour immunity. Nature 2006;6:535–45. https://doi.org/10.1038/nrc1894.Search in Google Scholar PubMed PubMed Central

28. Gust, D, Moore, TA, Moore, AL. Mimicking photosynthetic solar energy transduction. Acc Chem Res 2001;34:40–8. https://doi.org/10.1021/ar9801301.Search in Google Scholar PubMed

29. Guldi, DM. Fullerene-porphyrin architectures: photosynthetic antenna and reaction center models. Chem Soc Rev 2002;31:22–36. https://doi.org/10.1039/b106962b.Search in Google Scholar PubMed

30. Wasielewski, MR. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res 2009;42:1910–21. https://doi.org/10.1021/ar9001735.Search in Google Scholar PubMed

31. Aratani, N, Kim, D, Osuka, A. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc Chem Res 2009;42:1922–34. https://doi.org/10.1021/ar9001697.Search in Google Scholar PubMed

32. Imanori, H, Umeyama, T, Ito, S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 2009;42:1809–18.10.1021/ar900034tSearch in Google Scholar

33. Planells, M, Forneli, A, Martínez-Ferrero, E, Sánchez-Díaz, A, Sarmentero, MA, Ballester, P, et al.. The effect of molecular aggregates over the interfacial charge transfer processes on dye sensitized solar cells. Appl Phys Lett 2008;92:153506. https://doi.org/10.1063/1.2909573.Search in Google Scholar

34. Rakow, NA, Suslick, KS. A colorimetric sensor array for odour visualization. Nature 2000;406:710–3. https://doi.org/10.1038/35021028.Search in Google Scholar PubMed

35. Monti, D, Nardis, S, Stefanelli, M, Paolesse, R, Di Natale, C, D’Amico, A. Porphyrin-based nanostructures for sensing applications. J Sensors 2009;2009:1–10. https://doi.org/10.1155/2009/856053.Search in Google Scholar

36. Liao, M-S, Watts, JD, Huang, M-J. FeII in different Macrocycles:  electronic structures and properties. J Phys Chem 2005;109:7988–8000. https://doi.org/10.1021/jp0581476.Search in Google Scholar PubMed

37. Broadhurst, MJ, Grigg, R, Johnson, AW. Synthesis of porphin analogues containing furan and/or thiophen rings. J Chem Soc C 1971k:3681–90. https://doi.org/10.1039/j39710003681.Search in Google Scholar

38. Johnson, AW. Structural analogs of porphyrins. In: Smith, KM, editor. Porphyrins and metalloporphyrins. Amsterdam: Elsevier; 1975:729–54 pp.Search in Google Scholar

39. Latos-Grazyński, L. Core-modified heteroanalogues of porphyrins and metalloporphyrins. In: Kadish, KM, Smith, KM, Guilard, R, editors. The porphyrin handbook. San Diego, CA: Academic Press; 2000, vol 2. Chapter 14.Search in Google Scholar

40. Chandrashekar, TK, Venkatraman, S. Core-modified expanded porphyrins:  new generation organic materials. Acc Chem Res 2003;36:676–91. https://doi.org/10.1021/ar020284n.Search in Google Scholar PubMed

41. Furuta, H, Maeda, H, Confusion, AO. Inversion, and creation-a new spring from porphyrin chemistry. Chem Commun 2002:1795–804. https://doi.org/10.1039/b200525p.Search in Google Scholar PubMed

42. Chmielewski, PJ, Latos-Grazyński, L. Core modified porphyrins: a macrocyclic platform for organometallic chemistry. Coord Chem Rev 2005;249:2510–33. https://doi.org/10.1016/j.ccr.2005.05.015.Search in Google Scholar

43. Gupta, I, Ravikanth, M. Recent developments in heteroporphyrins and their analogues. Coord Chem Rev 2006;250:468–518. https://doi.org/10.1016/j.ccr.2005.10.010.Search in Google Scholar

44. Kuznetsov, AE. Core-modified porphyrins and their derivatives as important and promising class of ligands: review on research and perspectives. Adv Chem Res 2019;57:1–76.Search in Google Scholar

45. Mishra, VL, Furuyama, T, Kobayashi, N, Goto, K, Miyazaki, T, Yang, J-S, et al.. Optical properties, and electronic structures of tetrakis(pentafluorophenyl)tetrathiaisophlorin dioxide. Chem Eur J 2016;22:9190–7. https://doi.org/10.1002/chem.201505079.Search in Google Scholar PubMed

46. Vogel, E, Haas, W, Knipp, B, Lex, J, Schmicker, H. Angew Chem Int Ed Engl 1988;27:406–8. https://doi.org/10.1002/anie.198804061.Search in Google Scholar

47. Vogel, E, Röhrig, P, Sicken, M, Knipp, B, Herrmann, A, Pohl, M, et al.. The thiophene analogue of porphyrin: tetrathiaporphyrin dication. Angew Chem, 1989;101:1683–7. Angew Chem Int Ed Engl 1989;28:1651–5. https://doi.org/10.1002/anie.198916511.Search in Google Scholar

48. Vogel, E, Pohl, M, Herrmann, A, Wiss, T, König, C, Lex, J, et al.. Porphyrinoid macrocycles based on thiophene—the octaethyltetrathiaporphyrin dication. Angew Chem 1996;108:1677–82. Angew Chem Int Ed Engl 1996;35:1520–4. https://doi.org/10.1002/ange.19961081345.Search in Google Scholar

49. Woodward, RB. Totalsynthese des Chlorophylls. Angew Chem 1960;72:651–62. https://doi.org/10.1002/ange.19600721803.Search in Google Scholar

50. Pohl, M, Schmicker, H, Lex, J, Isophlorins, EV. Molecules at the crossroads of porphyrin and annulene chemistry. Angew Chem Int Ed Engl 1991;30:1693–7. https://doi.org/10.1002/anie.199116931.Search in Google Scholar

51. Chao, L, Shen, D-M, Chen, Q-Y. Synthesis and reactions of 20 π-electron β-Tetrakis(trifluoromethyl)-meso-tetraphenyl-porphyrins. J Am Chem Soc 2007;129:5814–5.10.1021/ja070855cSearch in Google Scholar

52. Setsune, J-i, Kashihara, K, Wada, K-i, Shiozaki, H. Photoreduction of, N. N′-Bridged porphyrins to 20π antiaromatic isophlorins. Chem Lett 1999;28:847–8. https://doi.org/10.1246/cl.1999.847.Search in Google Scholar

53. Yamamoto, Y, Yamamoto, A, Furuta, S, Horie, M, Kodama, M, Sato, W, et al.. Synthesis and structure of 16 π octaalkyltetraphenylporphyrins. J Am Chem Soc 2005;127:4540–14541. https://doi.org/10.1021/ja052842+.10.1021/ja052842+Search in Google Scholar

54. Reddy, JS, Anand, VG. Planar meso pentafluorophenyl core modified isophlorins. J Am Chem Soc 2008;130:3718–9. https://doi.org/10.1021/ja710664y.Search in Google Scholar PubMed

55. Kon-no, M, Mack, J, Kobayashi, N, Suenaga, M, Yoza, K, TS. Synthesis, optical properties, and electronic structures of fully core modified porphyrin dications and isophlorins. Chem Eur J 2012;18:13361–71. https://doi.org/10.1002/chem.201200776.Search in Google Scholar PubMed

56. Ravikanth, M, Chandrashekar, TK. Nonplanar porphyrins and their biological relevance: ground and excited state dynamics. Struct Bonding (Berlin) 1995;82:105–88.10.1007/BFb0036827Search in Google Scholar

57. Shimizu, Y, Shen, Z, Okujima, T, Uno, H, Ono, N. First synthesis of a series of core-modified tetrabenzoporphyrins. Chem Commun 2004:374–5. https://doi.org/10.1039/b311879g.Search in Google Scholar PubMed

58. Keith, TA, Bader, RFW. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem Phys Lett 1993;210:223–31. https://doi.org/10.1016/0009-2614(93)89127-4.Search in Google Scholar

59. Zanasi, R. Coupled Hartree–Fock calculations of molecular magnetic properties annihilating the transverse paramagnetic current density. J Chem Phys 1996;105:1460–9. https://doi.org/10.1063/1.472008.Search in Google Scholar

60. Xu, H-J, Mack, J, Wu, D, Xue, Z-L, Descalzo, AB, Rurack, K, et al.. Synthesis and properties of fused-ring-expanded porphyrins that were core-modified with group 16 heteroatoms. Chem Eur J 2012;18:16844–67. https://doi.org/10.1002/chem.201200956.Search in Google Scholar PubMed

61. Xu, H-J, Mack, J, Descalzo, AB, Shen, Z, Kobayashi, N, You, X-Z, et al.. meso-Aryl phenanthroporphyrins: synthesis and spectroscopic properties. Chem Eur J 2011;17:8965–83. https://doi.org/10.1002/chem.201002596.Search in Google Scholar PubMed

62. Bongini, A, Barbarella, G, Zambianchi, M, Arbizzani, C, Mastragostino, M. Thiophene S-oxides: orbital energies and electrochemical properties. Chem Commun 2000:439–40. https://doi.org/10.1039/a909390g.Search in Google Scholar

63. Abe, M, Hilmey, DG, Stilts, CE, Sukumaran, DK, Detty, MR. 21-Telluraporphyrins. 1. Impact of 21,23-heteroatom interactions on electrochemical redox potentials, 125Te NMR spectra, and absorption spectra. Organometallics 2002;21:2986–92. https://doi.org/10.1021/om0202219.Search in Google Scholar

64. Shimizu, Y, Shen, Z, Ito, S, Uno, H, Daub, J, Ono, N. A convenient synthesis of isothianaphthene oligomers and their electrochemical studies. Tetrahedron Lett 2002;43:8485–8. https://doi.org/10.1016/s0040-4039(02)02054-3.Search in Google Scholar

65. Okujima, T, Komobuchi, N, Shimizu, Y, Uno, H, Ono, N. An efficient synthesis of conjugation-expanded carba- and azuliporphyrins using a bicyclo[2.2.2]octadiene-fused tripyrrane. Tetrahedron Lett 2004;45:5461–4. https://doi.org/10.1016/j.tetlet.2004.05.041.Search in Google Scholar

66. Mack, J, Bunya, M, Shimizu, Y, Uoyama, H, Komobuchi, N, Okujima, T, et al.. Application of MCD spectroscopy and TD-DFT to nonplanar core-modified tetrabenzoporphyrins: effect of reduced symmetry on nonplanar porphyrinoids. Chem Eur J 2008;14:5001–20. https://doi.org/10.1002/chem.200701611.Search in Google Scholar PubMed

67. Reddy, BK, Gadekar, SC, Anand, VG. The synthesis and characterization of the meso–meso linked antiaromatic tetraoxaisophlorin dimer. Chem Commun 2016;52:3007–9. https://doi.org/10.1039/c5cc10370c.Search in Google Scholar PubMed

68. Müller, TJJ, Bunz, UH. Functional organic materials: syntheses, strategies and applications. New York: Wiley VCH; 2007.10.1002/9783527610266Search in Google Scholar

69. Beaujuge, PM, Fréchet, JMJ. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 2011;133:20009–29. https://doi.org/10.1021/ja2073643.Search in Google Scholar PubMed

70. Breslow, R, Jaun, B, Kluttz, RQ, Xia, C-Z. Ground state Pi-electron triplet molecules of potential use in the synthesis of organic ferromagnets. Tetrahedron 1982;38:863–7. https://doi.org/10.1016/0040-4020(82)80167-1.Search in Google Scholar

71. Garratt, PJ. Aromaticity. New York: Wiley; 1986.Search in Google Scholar

72. Bachmann, R, Gerson, F, Gescheidt, G, Vogel, E. Five redox stages of tetraoxaporphyrin: a UV/visible/near-IR, ESR, and MO theoretical study. J Am Chem Soc 1992;114:10855–60. https://doi.org/10.1021/ja00053a022.Search in Google Scholar

73. Reddy, BK, Gadekar, SC, Anand, VG. Non-covalent composites of antiaromatic isophlorin–fullerene. Chem Commun 2015;51:8276–9. https://doi.org/10.1039/c5cc00771b.Search in Google Scholar PubMed

74. Osuka, A, Shimidzu, H. Meso, meso-linked porphyrin arrays. Angew Chem Int Ed 1997;36:135–7. https://doi.org/10.1002/anie.199701351.Search in Google Scholar

75. Pacholska-Dudziak, E, Latos-Grażyński, L. Aza-deficient porphyrin as a ligand. Coord Chem Rev 2009;253:2036–48. https://doi.org/10.1016/j.ccr.2009.01.029.Search in Google Scholar

76. Maeda, C, Kurihara, K, Masuda, M, Yoshioka, N. Effects of cyano, ethynyl and ethylenedioxy groups on the photophysical properties of carbazole-based porphyrins. Org Biomol Chem 2015;13:11286–91. https://doi.org/10.1039/c5ob01824b.Search in Google Scholar PubMed

77. Maeda, C, Masuda, M, Yoshioka, N. Synthesis of carbazole-based hetero-core-modified porphyrins. Org Biomol Chem 2014;12:2656–62. https://doi.org/10.1039/c3ob42564a.Search in Google Scholar PubMed

78. Ren, J, Bai, F-Q, Zhang, H-X. The induced current strengths and aromatic pathways of heteroporphyrins and their antiaromatic derivatives. Int J Quant Chem 2015;115:983–8. https://doi.org/10.1002/qua.24932.Search in Google Scholar

79. Castillo, UJ, López, H, Guadarrama, P, Fomine, S. DFT study of zinc, cadmium, mercury, copper, silver, and gold complexes of 21,23-dioxaporphyrin and one-dimensional arrays of those complexes. J Mol Model 2015;21:129. https://doi.org/10.1007/s00894-015-2676-3.Search in Google Scholar PubMed

80. Ghosh, A, Chaudhary, A, Srinivasan, A, Suresh, CH, Chandrashekar, TK. [32]π fused core-modified heptaphyrin with Möbius aromaticity. Chem Eur J 2016;22:3942–6. https://doi.org/10.1002/chem.201505116.Search in Google Scholar PubMed

81. Gopalakrishna, TY, Reddy, JS, Anand, VG. An amphoteric switch to aromatic and antiaromatic states of a neutral air-stable 25π radical. Angew Chem Int Ed 2014;53:10984–7. https://doi.org/10.1002/anie.201406893.Search in Google Scholar PubMed

82. Zhou, Z, Shen, Z. The development of artificial porphyrinoids embedded with functional building blocks. J Mater Chem C 2015;3:3239. https://doi.org/10.1039/c5tc00115c.Search in Google Scholar

83. Ahmad, S, Singhal, A, Nisa, K, Chauhan, SMS. Synthesis of selenium and tellurium core-modified azuliporphyrinogens and benziporphyrinogens and corresponding carbaporphyrinoids. Inorg Chem 2018;57:11333−40. https://doi.org/10.1021/acs.inorgchem.8b00648.Search in Google Scholar PubMed

84. Alka, A, Shetti, VS, Ravikanth, M. Telluraporphyrinoids: an interesting class of core-modified porphyrinoids. Dalton Trans 2019;48:4444–59. https://doi.org/10.1039/c9dt00079h.Search in Google Scholar PubMed

85. Kumar, S, Thorat, KG, Lee, W-Z, Ravikanth, M. Synthesis, structural, spectral, and electrochemical studies of selenabenziporphyrin and its Pd(II) complex. Inorg Chem 2018;57:8956−63. https://doi.org/10.1021/acs.inorgchem.8b00914.Search in Google Scholar PubMed

86. Kumar, S, Lee, W-Z, Ravikanth, M. Synthesis of tellurabenziporphyrin and its Pd(II) complex. Org Lett 2018;20:636−9. https://doi.org/10.1021/acs.orglett.7b03715.Search in Google Scholar PubMed

87. Sengupta, R, Thorat, KG, Ravikanth, M. Effects of core modification on electronic properties of para-benziporphyrin. Inorg Chem 2019;58:12069–82. https://doi.org/10.1021/acs.inorgchem.9b01374.Search in Google Scholar PubMed

88. Lash, TD, AbuSalim, DI, Ferrence, GM. Telluracarbaporphyrins and a related palladium(II) complex: evidence for hypervalent interactions. Inorg Chem 2021. https://doi.org/10.1021/acs.inorgchem.1c01039.Search in Google Scholar PubMed

89. Reddy, BK, Basavarajappa, A, Ambhore, MD, Anand, VG. Isophlorinoids: the antiaromatic congeners of porphyrinoids. Chem Rev 2017;117:3420–43. https://doi.org/10.1021/acs.chemrev.6b00544.Search in Google Scholar PubMed

90. Panchal, SP, Reddy, BK, Anand, VG. Syntheses and redox chemistry of antiaromatic core-modified isophlorinoids. Synlett 2018;29:2362–71.10.1055/s-0037-1609907Search in Google Scholar

91. Pukhovskaya, SG, Ivanova, YB, Kiselev, AN, Fomina, NA, Syrbu, SA. Synthesis, structure and basic properties of 5,10,15,20-tetrakis[4′-(benzoxazole-2-yl)phenyl]-21,23-dithiaporphyrin. J Mol Struct 2021;1238:130406. https://doi.org/10.1016/j.molstruc.2021.130406.Search in Google Scholar

92. Carmichael, D, Escalle-Lewis, A, Frison, G, Le Goffa, X, Muller, E. Stepwise syntheses of tri- and tetraphosphaporphyrinogens. Chem Commun 2012;48:302–4. https://doi.org/10.1039/c1cc15421d.Search in Google Scholar PubMed

93. Quin, LD. The heterocyclic chemistry of phosphorus. New York: Wiley; 1981.Search in Google Scholar

94. Minkin, VI, Glukhovtsev, MN, Simkin, BY. Aromaticity, antiaromaticity electronic and structural aspects. New York: Wiley; 1994.Search in Google Scholar

95. Matano, Y, Imahori, H. Design and synthesis of phosphole-based π systems for novel organic materials. Org Biomol Chem 2009;7:1258–71. https://doi.org/10.1039/b819255n.Search in Google Scholar PubMed

96. Hissler, M, Dyer, PW, Réau, R. Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements. Coord Chem Rev 2003;244:1–44. https://doi.org/10.1016/s0010-8545(03)00098-5.Search in Google Scholar

97. Baumgartner, T, Réau, R. Organophosphorus π-conjugated materials. Chem Rev 2006;106:4681–727. correction: 107 (2007) 303. https://doi.org/10.1021/cr040179m.Search in Google Scholar PubMed

98. Delaere, D, Nguyen, MT. A density functional study of the ground state electronic structure of phosphorus-porphyrins. Chem Phys Lett 2003;376:329–37. https://doi.org/10.1016/s0009-2614(03)01012-1.Search in Google Scholar

99. Matano, Y, Nakabuchi, T, Imahori, H. Synthesis, structures, and aromaticity of phosphole-containing porphyrins and their metal complexes. Pure Appl Chem 2010;82:583–93. https://doi.org/10.1351/pac-con-09-08-05.Search in Google Scholar

100. Matano, Y, Imahori, H. Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry. Acc Chem Res 2009;42:1193–204. https://doi.org/10.1021/ar900075e.Search in Google Scholar PubMed

101. Nakabuchi, T, Matano, Y, Imahori, H. Remarkable effects of P-perfluorophenyl group on the synthesis of core-modified phosphaporphyrinoids and phosphadithiasapphyrin. Org Lett 2010;12:1112–5. https://doi.org/10.1021/ol100114j.Search in Google Scholar PubMed

102. Nakabuchi, T, Nakashima, M, Fujishige, S, Nakano, H, Matano, Y, Imahori, H. Synthesis and reactions of phosphaporphyrins: reconstruction of π-skeleton triggered by oxygenation of a core phosphorus atom. J Org Chem 2010;75:375–89. https://doi.org/10.1021/jo902060b.Search in Google Scholar PubMed

103. Matano, Y, Nakashima, M, Nakabuchi, T, Imahori, H, Fujishige, S, Monophosphaporphyrins, HN. Oxidative π-extension at the peripherally fused carbocycle of the phosphaporphyrin ring. Org Lett 2008;10:553–6. https://doi.org/10.1021/ol7029118.Search in Google Scholar PubMed

104. Matano, Y, Nakabuchi, T, Fujishige, S, Nakano, H, Imahori, H. Redox-coupled complexation of 23-phospha-21-thiaporphyrin with group 10 metals: a convenient access to stable core-modified isophorin-metal complexes. J Am Chem Soc 2008;130:16446–7. https://doi.org/10.1021/ja807742g.Search in Google Scholar PubMed

105. Matano, Y, Nakabuchi, T, Miyajima, T, Imahori, H, Nakano, H. Synthesis of phosphorus-containing hybrid porphyrin. Org Lett 2006;8:5713–6. https://doi.org/10.1021/ol0622763.Search in Google Scholar PubMed

106. Matano, Y, Miyajima, T, Ochi, N, Nakabuchi, T, Shiro, M, Nakao, Y, et al.. Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. J Am Chem Soc 2008;130:990–1002. https://doi.org/10.1021/ja076709o.Search in Google Scholar PubMed

107. Matano, Y, Miyajima, T, Nakabuchi, T, Imahori, H, Ochi, N, Sakaki, S. Phosphorus-containing hybrid calixphyrins: promising mixed-donor ligands for visible and efficient palladium catalysts. J Am Chem Soc 2006;128:11760–1. https://doi.org/10.1021/ja0640039.Search in Google Scholar PubMed

108. Ochi, N, Nakao, Y, Sato, H, Matano, Y, Imahori, H, Sakaki, S. New palladium(II) complex of P,S-containing hybrid calixphyrin. Theoretical study of electronic structure and reactivity for oxidative addition. J Am Chem Soc 2009;131:10955–63. https://doi.org/10.1021/ja901166a.Search in Google Scholar PubMed

109. Barbee, J, Kuznetsov, AE. Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins. Comp Theor Chem 2012;981:73–85. https://doi.org/10.1016/j.comptc.2011.11.049.Search in Google Scholar PubMed PubMed Central

110. Kuznetsov, AE. Metalloporphyrins with all the pyrrole nitrogens replaced with phosphorus atoms. MP(P)4 (M = Sc, Ti, Fe, Ni, Cu, Zn). Chem Phys 2015;447:36–45. https://doi.org/10.1016/j.chemphys.2014.11.018.Search in Google Scholar

111. Kuznetsov, AE. How the change of the ligand from L = porphine, P2-, to L = P4-substituted porphine, P(P)42-, affects the electronic properties and the M-L binding energies for the first-row transition metals M=Sc-Zn: comparative study. Chem Phys 2016;469–470:38–48. https://doi.org/10.1016/j.chemphys.2016.02.010.Search in Google Scholar

112. Kuznetsov, AE. Computational design of ZnP(P)4 stacks: three modes of binding. J Theor Comp Chem 2016;15:1650043. https://doi.org/10.1142/s0219633616500437.Search in Google Scholar

113. Kuznetsov, AE. Can MP(P)4 compounds form complexes with C60? J. App. Solution Chem. Model. 2017;6:91–7. https://doi.org/10.6000/1929-5030.2017.06.03.1.Search in Google Scholar

114. Kuznetsov, AE. Complexes between core-modified porphyrins ZnP(X)4 (X = P and S) and small semiconductor nanoparticle Zn6S6: are they possible? Phys Sci Rev 2017:135–46. https://doi.org/10.1515/psr-2017-0187.Search in Google Scholar

115. Kuznetsov, AE. Phthalocyanines core-modified by P and S and their complexes with fullerene C60: DFT study. Phys Sci Rev 2019;4:20190001. https://doi.org/10.1515/psr-2019-0001.Search in Google Scholar

116. Kuznetsov, AE. Hexabenzocoronene functionalized with porphyrin and P-core-modified porphyrin: a comparative computational study. Comp Theor Chem 2020;1188:112973. https://doi.org/10.1016/j.comptc.2020.112973.Search in Google Scholar

117. Kuznetsov, AE. Comparison of P-and As-core-modified porphyrins with the parental porphyrin: a computational study. Pure Appl Chem 2021. https://doi.org/10.1515/pac-2020-1105.Search in Google Scholar

Received: 2021-07-01
Accepted: 2021-07-01
Published Online: 2021-08-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2021-0079/html
Scroll to top button