Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 12, 2017

New insights into phosphate based materials for the immobilisation of actinides

  • Stefan Neumeier EMAIL logo , Yulia Arinicheva , Yaqi Ji , Julia M. Heuser , Piotr M. Kowalski , Philip Kegler , Hartmut Schlenz , Dirk Bosbach and Guido Deissmann
From the journal Radiochimica Acta

Abstract

This paper focuses on major phosphate-based ceramic materials relevant for the immobilisation of Pu, minor actinides, fission and activation products. Key points addressed include the recent progress regarding synthesis methods, the formation of solid solutions by structural incorporation of actinides or their non-radioactive surrogates and waste form fabrication by advanced sintering techniques. Particular attention is paid to the properties that govern the long-term stability of the waste forms under conditions relevant to geological disposal. The paper highlights the benefits gained from synergies of state-of-the-art experimental approaches and advanced atomistic modeling tools for addressing properties and stability of f-element-bearing phosphate materials. In conclusion, this article provides a perspective on the recent advancements in the understanding of phosphate based ceramics and their properties with respect to their application as nuclear waste forms.

Acknowledgements

This work was financially supported by the German Federal Ministry of Education and Research (BMBF); grant no.: 02NUK021A. The authors thank the JARA-HPC (Jülich Aachen Research Alliance, Section High Performance Computing) for computing time at the RWTH Aachen University and Forschungszentrum Jülich GmbH computing resources. Yulia Arinicheva thanks HITEC – the Graduate School in Energy and Climate Research at the Forschungszentrum Jülich, Germany for financial support to her PhD thesis. Eike Langer from Forschungszentrum Jülich GmbH (IEK-6) is gratefully thanked for support of figures preparation.

References

1. International Atomic Energy Agency (IAEA): Scientific and technical basis for the geological disposal of radioactive wastes. Technical Reports Series 413, Vienna, 80 pp. (2004).Search in Google Scholar

2. Council of the European Union: COUNCIL DIRECTIVE 2011/70/EURATOM of 19 July 2011 establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste. Brussels, 56 pp. (2011).Search in Google Scholar

3. Ahn, J., Apted, M. J.: Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Woodhead Publishing, Oxford, 792 pp. (2011).10.1533/9781845699789Search in Google Scholar

4. USDOE. The Evaluation and Selection of Candidate High-Level Waste Forms, US Department of Energy Report DOE/TIC 11611, Savannah River Operations Office, Aiken, SC (1982).Search in Google Scholar

5. Hench, L. L., Clark, D. E., Campbell, J.: High level waste immobilization forms. Nucl. Chem. Waste Manage. 5, 149 (1984).10.1016/0191-815X(84)90045-7Search in Google Scholar

6. Lutze, W., Ewing, R. C. (Eds.): Radioactive Waste Forms for the Future, North Holland, Amsterdam, Netherlands (1988).Search in Google Scholar

7. Donald, I. W., Metcalfe, B. L., Taylor, R. N. J.: Review: the immobilisation of high level radioactive wastes using glasses and ceramics. J. Mater. Sci. 32, 5851 (1997).10.1023/A:1018646507438Search in Google Scholar

8. Donald, I. W.: Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes, John Wiley & Sons Ltd, Chichester, West Sussex, UK (2016).Search in Google Scholar

9. Lumpkin, G. R.: Ceramic waste forms for actinides. Elements 2, 365 (2006).10.2113/gselements.2.6.365Search in Google Scholar

10. Ewing, R. C.: Ceramic matrices for plutonium disposition. Prog. Nucl. Energy 49, 635 (2007).10.1016/j.pnucene.2007.02.003Search in Google Scholar

11. Weber, W. J., Navrotsky, A., Stefanovsky, S., Vance, E., Vernaz, E.: Materials science of high-level nuclear waste immobilization. MRS Bull. 34, 46 (2009).10.1557/mrs2009.12Search in Google Scholar

12. Vance, E. R., Perera, D. S., Moricca, S., Aly, Z., Begg, B. D.: Immobilisation of 129I by encapsulation in tin by hot-pressing at 200 °C. J. Nucl. Mater. 341, 93 (2005).10.1016/j.jnucmat.2005.01.011Search in Google Scholar

13. Carter, M. L., Gillen, A. L., Olufson, K., Vance, E. R.: HIPed tailored hollandite waste forms for the immobilization of radioactive Cs and Sr. J. Am. Ceram. Soc. 92, 1112 (2009).10.1111/j.1551-2916.2009.03021.xSearch in Google Scholar

14. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278, 219 (1979).10.1038/278219a0Search in Google Scholar

15. Ewing, R. C., Weber, W. J., Lian, J.: Nuclear waste disposal – pyrochlore (A2B2O7): nuclear wasteform for the immobilization of plutonium and “minor” actinides. Appl. Phys. Rev. 95, 5949 (2004).10.1063/1.1707213Search in Google Scholar

16. Oelkers, E. H., Montel, J.-M.: Phosphates and nuclear waste storage. Elements 4, 113 (2008).10.2113/GSELEMENTS.4.2.113Search in Google Scholar

17. Dacheux, N., Clavier, N., Podor, R.: Versatile monazite: resolving geological records and solving challenges in materials science: monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability. Am. Mineral. 98, 833 (2013).10.2138/am.2013.4307Search in Google Scholar

18. Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., Bosbach, D.: Monazite as a suitable actinide waste form. Z. Krist. 228, 113 (2013).10.1524/zkri.2013.1597Search in Google Scholar

19. Burakov, B. E., Yagovkina, M. A., Zamoryanskaya, M. V., Petrova, M. A., Domracheva, Y. V., Kolesnikova, E. V., Nikolaeva, L. D., Garbuzov, V. M., Kitsay, A. A., Zirlin, V. A.: Behavior of actinide host-phases under self-irradiation: zircon, pyrochlore, monazite, and cubic zirconia doped with Pu-238. In: S. V. Krivovichev (Ed.), Minerals as Advanced Materials, Springer, Berlin, Heidelberg (2008), p. 209.10.1007/978-3-540-77123-4_26Search in Google Scholar

20. Deissmann, G., Neumeier, S., Modolo, G., Bosbach, D.: Durability of potential plutonium wasteforms under repository conditions. Mineral. Mag. 76, 2911 (2012).10.1180/minmag.2012.076.8.06Search in Google Scholar

21. Carter, M. L., Stewart, M. W. A., Vance, E. R., Begg, B. D., Moricca, S., Tripp, J.: HIPed tailored ceramic waste forms for the immobilization of Cs, Sr, and Tc. In: Proceedings GLOBAL 2007, Boise, ID, USA (2007), p. 1022.Search in Google Scholar

22. Angeli, F., McGlinn, P., Frugier, P.: Chemical durability of hollandite ceramic for conditioning cesium. J. Nucl. Mater. 380, 59 (2008).10.1016/j.jnucmat.2008.07.003Search in Google Scholar

23. Hartmann, T., Alaniz, A. J., Antonio, D. J.: Fabrication and properties of technetium-bearing pyrochlores and perovskites as potential waste forms. Procedia Chem. 7, 622 (2012).10.1016/j.proche.2012.10.095Search in Google Scholar

24. Nenoff, T. M., Krumhansl, J. L., Gao, H. H., Rajan, A., McMahon, K.: Iodine waste form summary report. Sandia National Laboratories Report SAND2007-6202, Albuquerque, New Mexico and Livermore, California (2007).10.2172/922085Search in Google Scholar

25. Gras, J. M., Do Quang, R., Masson, H., Lieven, T., Ferry, C., Poinssot, C., Debes, M., Delbecq, J. M.: Perspectives on the closed fuel cycle – implications for high-level waste matrices. J. Nucl. Mater. 362, 383 (2007).10.1016/j.jnucmat.2007.01.210Search in Google Scholar

26. Clavier, N., Podor, R., Dacheux, N.: Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 31, 941 (2011).10.1016/j.jeurceramsoc.2010.12.019Search in Google Scholar

27. Poitrasson, F., Oelkers, E., Schott, J., Montel, J.-M.: Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids. Geochim. Cosmochim. Acta 68, 2207 (2004).10.1016/j.gca.2003.12.010Search in Google Scholar

28. Oelkers, E. H., Poitrasson, F.: An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chem. Geol. 191, 73 (2002).10.1016/S0009-2541(02)00149-3Search in Google Scholar

29. Ewing, R. C., Wang, L. M.: Phosphates as nuclear waste forms. Rev. Mineral. Geochem. 48, 673 (2002).10.2138/rmg.2002.48.18Search in Google Scholar

30. Meldrum, A., Boatner, L. A., Weber, W. J., Ewing, R. C.: Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 62, 2509 (1998).10.1016/S0016-7037(98)00174-4Search in Google Scholar

31. Meldrum, A., Boatner, L. A., Ewing, R. C.: A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral. Mag. 64, 185 (2000).10.1180/002646100549283Search in Google Scholar

32. Ewing, R. C., Meldrum, A., Wang, L. M., Wang, S.: Radiation induced amorphization. Rev. Mineral. Geochem. 39, 319 (2000).10.2138/rmg.2000.39.12Search in Google Scholar

33. Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. (Eds.): Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA, USA (2000). http://www.handbookofmineralogy.org/.Search in Google Scholar

34. Mesbah, A., Clavier, N., Elkaim, E., Gausse, C., Kacem, I. B., Szenknect, S., Dacheux, N.: Monoclinic form of the rhabdophane compounds: REEPO4·0.667H2O. Cryst. Growth Des. 1, 5090 (2014).10.1021/cg500707bSearch in Google Scholar

35. Ni, Y. X., Hughes, J. M., Mariano, A. N.: Crystal chemistry of the monazite and xenotime structure. Am. Mineral. 80, 21 (1995).10.2138/am-1995-1-203Search in Google Scholar

36. Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).10.1107/S0567739476001551Search in Google Scholar

37. Boatner, L. A.: Synthesis, structure and properties of monazite, pretulite and xenotime. Rev. Mineral. Geochem. 48, 87 (2002).10.2138/rmg.2002.48.4Search in Google Scholar

38. Cuney, M., Mathieu, R.: Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology 28, 743 (2000).10.1130/0091-7613(2000)28<743:ELREEM>2.0.CO;2Search in Google Scholar

39. Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J. M., Heinrich, W.: An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys. Chem. Miner. 29, 240 (2002).10.1007/s00269-001-0232-4Search in Google Scholar

40. Seydoux-Guillaume, A. M., Wirth, R., Deutsch, A., Schärer, U.: Microstructure of 24 - 1928 Ma concordant monazites: implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 68, 2517 (2004).10.1016/j.gca.2003.10.042Search in Google Scholar

41. Lumpkin, G. R., Geisler-Wierwille, T.: Minerals and natural analogues. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier Ltd., Amsterdam (2012), Vol. 5, p. 563.10.1016/B978-0-08-056033-5.00111-7Search in Google Scholar

42. Seydoux-Guillaume, A. M., Wirth, R., Ingrin, J.: Contrasting response of ThSiO4 and monazite to natural irradiation. Eur. J. Mineral. 19, 7 (2007).10.1127/0935-1221/2007/0019-007Search in Google Scholar

43. Seydoux-Guillaume, A. M., Montel, J. M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J. L., Janots, E., Wirth, R.: Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem. Geol. 330–331, 140 (2012).10.1016/j.chemgeo.2012.07.031Search in Google Scholar

44. Montel, J. M., Razafimahatratra, D., Ralison, B., De Parseval, P., Thibault, M., Randranja, R.: Monazite from mountain to ocean: a case study from Trolognaro (Fort-Dauphin). Madag. Eur. J. Mineral. 23, 745 (2011).10.1127/0935-1221/2011/0023-2149Search in Google Scholar

45. Bregiroux, D., Lucas, S., Champion, E., Audubert, F., Bernache-Assollant, D.: Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE=La, Ce or Y. J. Eur. Ceram. Soc. 26, 279 (2006).10.1016/j.jeurceramsoc.2004.11.004Search in Google Scholar

46. Bregiroux, D., Audubert, F., Charpentier, T., Sakellariou, D., Bernache-Assollant, D.: Solid-state synthesis of monazite-type compounds LnPO4 (Ln=La to Gd). Solid State Sci. 9, 432 (2007).10.1016/j.solidstatesciences.2007.03.019Search in Google Scholar

47. Popa, K., Konings, R. J. M.: High-temperature heat capacities of EuPO4 and SmPO4 synthetic monazites. Thermochim. Acta 445, 49 (2006).10.1016/j.tca.2006.03.023Search in Google Scholar

48. Aloy, A. S., Kovarskaya, E. N., Koltsova, T. I., Samoylov, S. E., Rovnyi, S. I., Medvedev, G. M. Immobilisation of Am-241 formed under plutonium metal conversion into monazite-type ceramic. In: L. J. Lardine, G. B. Borisov (Eds.), Review of Excess Weapons Plutonium Disposition. LLNL Contract work in Russia, UCRL-ID-149341 (2002), pp. 141–5.Search in Google Scholar

49. Ushakov, S., Helean, K., Navrotsky, A., Boatner, L.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).10.1557/JMR.2001.0361Search in Google Scholar

50. Huittinen, N., Arinicheva, Y., Schmitz, M., Neumeier, S., Stumpf, T.: Using Eu3+ as an atomic probe to investigate the local environment in LaPO4–GdPO4 monazite end-members. J. Colloid Interface Sci. 483, 139 (2016).10.1016/j.jcis.2016.08.027Search in Google Scholar PubMed

51. Terra, O., Clavier, N., Dacheux, N., Podor, R.: Preparation and characterization of lanthanum – gadolinium monazites as ceramics for radioactive waste storage. New J. Chem. 27, 957 (2003).10.1039/B212805PSearch in Google Scholar

52. Popa, K., Konings, R. J. M., Geisler, T.: High-temperature calorimetry of (La1−xLnx)PO4 solid solutions. J. Chem. Thermodyn. 39, 236 (2007).10.1016/j.jct.2006.07.010Search in Google Scholar

53. Brandt, F., Neumeier, S., Schuppik, T., Arinicheva, Y., Bukaemskiy, A., Modolo, G., Bosbach, D.: Conditioning of minor actinides in lanthanum monazite ceramics: a surrogate study with Europium. Prog. Nucl. Energy 72, 140 (2014).10.1016/j.pnucene.2013.07.019Search in Google Scholar

54. Neumeier, S., Kegler, P., Arinicheva, Y., Shelyug, A., Kowalski, P. M., Schreinemachers, C., Navrotsky, A., Bosbach, D.: Thermochemistry of La1-xLnxPO4-monazites (Ln=Gd, Eu). J. Chem. Thermodyn. 105, 396 (2017).10.1016/j.jct.2016.11.003Search in Google Scholar

55. Arinicheva, Y., Bukaemskiy, A., Neumeier, S., Modolo, G., Bosbach, D.: Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides. Prog. Nucl. Energy 72, 144 (2014).10.1016/j.pnucene.2013.09.004Search in Google Scholar

56. Zeng, P., Teng, Y., Huang, Y., Wu, L., Wang, X.: Synthesis, phase structure and microstructure of monazite-type Ce1-xPrxPO4 solid solutions for immobilization of minor actinide neptunium. J. Nucl. Mater. 452, 407 (2014).10.1016/j.jnucmat.2014.05.068Search in Google Scholar

57. Bjorklund, C.W.: The preparation of PuP2O7 and PuPO4. J. Am. Chem. Soc. 79, 6347 (1958).10.1021/ja01581a001Search in Google Scholar

58. Burakov, B. E., Yagovkina, M. A., Garbuzov, V. M., Kitsay, A. A., Zirlin, V. A.: Self-irradiation of monazite ceramics: contrasting behavior of PuPO4 and (La,Pu)PO4 doped with Pu-238. Mater. Res. Soc. Symp. Proc. 824, 219 (2004).10.1557/PROC-824-CC4.1Search in Google Scholar

59. Rai, D., Felmy, A. R., Mason, M. J.: Solubility and ion activity product of AmPO4∙xH2O. Radiochim. Acta 56, 7 (1992).10.1524/ract.1992.56.1.7Search in Google Scholar

60. Aloy, A. S., Kovarskaya, E. N., Koltsova, T. I., Samoylov, S. E., Rovnyi, S. I., Medvedev, G. M., Jardine, L. J.: Immobilization of Am-241, formed under plutonium metal conversion, into monazite-type ceramics. Am. Soc. Mech. Eng. 3, 1833 (2002).10.1115/ICEM2001-1325Search in Google Scholar

61. Bregiroux, D., Belin, R., Valenza, P., Audubert, F., Bernache-Assollant, D.: Plutonium and americium monazite materials: solid state synthesis and X-ray diffraction study. J. Nucl. Mater. 366, 52 (2007).10.1016/j.jnucmat.2006.12.042Search in Google Scholar

62. Weigel, F., Haug, H.: Zur Kenntnis des Curium(III)phosphats. Radiochim. Acta 4, 227 (1965).10.1524/ract.1965.4.4.227Search in Google Scholar

63. Keller, C., Walter, K. H.: Darstellung, Gitterkonstanten und chemische Eigenschaften einiger ternärer Oxide des Plutoniums, Americiums und Curiums vom Typ MeIIIXVO4. J. Inorg. Nucl. Chem. 27, 1253 (1965).10.1016/0022-1902(65)80087-2Search in Google Scholar

64. Holliday, K. S., Babelot, C., Walther, C., Neumeier, S., Bosbach, D., Stumpf, T.: Site-selective time resolved laser fluorescence spectroscopy of Eu and Cm doped LaPO4. Radiochim. Acta 100, 189 (2012).10.1524/ract.2012.1900Search in Google Scholar

65. Hobart, D. E., Begun, G. M., Haire, R. G., Hellwegel, H. E.: Raman spectra of the transplutonium orthophosphates and trimetaphosphates. J. Raman Spectrosc. 14, 59 (1983).10.1002/jrs.1250140114Search in Google Scholar

66. Bamberger, C. E., Haire, R. G., Hellwege, H. E., Begun, G. M.: Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV). J. Less-Common Met. 97, 349 (1984).10.1016/0022-5088(84)90040-7Search in Google Scholar

67. Glorieux, B., Jorion, F., Montel, J. M., Matecki, M., Deschanels, X., Coutures, J. P.: Investigation of plutonium-239 conditioning in monazite and brabantite matrices: synthesis and characterization. In: Proceedings ATALANTE 2004, Nîmes, France (2004), O32-04, pp. 1–6.Search in Google Scholar

68. Popa, K., Raison, P. E., Martel, L., Martin, P. M., Prieur, D., Solari, P. L., Bouëxière, D., Konings, R. J. M., Somers, J.: Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy. J. Solid State Chem. 230, 169 (2015).10.1016/j.jssc.2015.07.002Search in Google Scholar

69. Jardin, R., Pavel, C. C., Raison, P. E., Bouëxière, D., Santa-Cruz, H., Konings, R. J. M., Popa, K.: The high-temperature behaviour of PuPO4 monazite and some other related compounds. J. Nucl. Mater. 378, 167 (2008).10.1016/j.jnucmat.2008.05.011Search in Google Scholar

70. Begg, B. D., Vance, E. R., Conradson, S. D.: The incorporation of plutonium and neptunium in zirconolite and perovskite. J. Alloys Compd. 271–273, 221 (1998).10.1016/S0925-8388(98)00058-9Search in Google Scholar

71. Popa, K., Colineau, E., Wastin, F., Konings, R. J. M.: The low-temperature heat capacity of (Pu0.1La0.9)PO4. Solid State Commun. 144, 74 (2007).10.1016/j.ssc.2007.07.011Search in Google Scholar

72. Arinicheva, Y., Popa, K., Scheinost, A. C., Rossberg, A., Dieste-Blanco, O., Raison, P., Cambriani, A., Somers, J., Neumeier, S., Bosbach, D.: Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study. J. Nucl. Mater. 493, 404 (2017).10.1016/j.jnucmat.2017.06.034Search in Google Scholar

73. Zhang, Y., Vance, E. R.: Plutonium in monazite and brabantite: diffuse reflectance spectroscopy study. J. Nucl. Mater. 375, 311 (2008).10.1016/j.jnucmat.2007.11.011Search in Google Scholar

74. Clavier, N., Dacheux, N., Wallez, G., Quarton, G.: Hydrothermal methods as a new way of actinide phosphate preparation. Mater. Res. Soc. Symp. Proc. 985, 169 (2007).10.1557/PROC-985-0985-NN04-08Search in Google Scholar

75. Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S., Dacheux, N.: In pursuit of the rhabdophane crystal structure: form the hydrated monoclinic LnPO4.0.667H2O to the hexagonal LnPO4 (Ln=Nd, Sm, Gd, Eu and Dy). J. Solid State Chem. 249, 221 (2017).10.1016/j.jssc.2017.03.004Search in Google Scholar

76. Mooney, R. C. L.: X-ray diffraction study of cerous phosphate and related crystals. Acta. Cryst. 3, 337 (1950).10.1107/S0365110X50000963Search in Google Scholar

77. Lucas, S., Champion, E., Bernache-Assollant, D., Leroy, G.: Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) – Part II. Thermal behavior. J. Solid State Chem. 177, 1312 (2004).10.1016/j.jssc.2003.11.004Search in Google Scholar

78. du Fou de Kerdaniel, E., Clavier, N., Dacheux, N., Terra, O., Podor, R.: Actinide solubility-controlling phases during the dissolution of phosphate ceramics. J. Nucl. Mater. 362, 451 (2007).10.1016/j.jnucmat.2007.01.132Search in Google Scholar

79. Gausse, C., Szenknect, S., Qin, D. W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D., Dacheux, N.: Determination of the solubility of rhabdophanes LnPO4·0.667H2O (Ln=La to Dy). Eur. J. Inorg. Chem. 28, 4615 (2016).10.1002/ejic.201600517Search in Google Scholar

80. Assaaoudi, H., Ennaciri, A., Rulmont A.: Vibrational spectra of hydrated rare earth orthophosphates. Vib. Spectrosc. 25, 81 (2001).10.1016/S0924-2031(00)00109-0Search in Google Scholar

81. Jonasson, R. C.: DTA study of the rhabdophane to monazite transformation in rare earth (La-Dy) phosphates. Thermochim. Acta 108, 65 (1986).10.1016/0040-6031(86)85078-XSearch in Google Scholar

82. Neumeier, S., Arinicheva, Y., Clavier, N., Podor, R., Bukaemskiy, A., Modolo, G., Dacheux, N., Bosbach D.: The effect of the synthesis route of monazite precursors on the microstructure of sintered pellets. Prog. Nucl. Energy 92, 298–305 (2016).10.1016/j.pnucene.2016.07.011Search in Google Scholar

83. Peiffert, C., Brouand, M., Cuney, M., Podor, R.: La monazite—de l’indicateur de fertilité des granites pour les granites. Rapport CEA-R-5748, 103–8 (1996).Search in Google Scholar

84. Podor R.: Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré Nancy, France, No: 94 NAN10404 (1994).Search in Google Scholar

85. Bregiroux, D., Popa, K., Wallez, G.: Crystal chemistry of MIIM′IV(PO4)2 double monophosphates. J. Solid State Chem. 230, 26 (2015).10.1016/j.jssc.2015.06.010Search in Google Scholar

86. Gramaccioli, C., Segalstad, T.: A uranium- and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy. Am. Mineral. 63, 757 (1978).Search in Google Scholar

87. Popa, K., Bregiroux, D., Konings, R. J. M., Goudera, T., Popa, A. F., Geisler, T., Raison, P. E.: The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry. J. Solid State Chem. 180, 2346 (2007).10.1016/j.jssc.2007.06.006Search in Google Scholar

88. Wallez, G., Bregiroux, D., Popa, K., Raison, P. E., Apostolidis, C., Lindqvist-Reis, P., Konings, R. J. M., Popa, A. F.: BaAnIV(PO4)2 (AnIV=Th, Np) – a new family of layered double phosphates. Eur. J. Inorg. Chem. 1/2011, 110 (2011).10.1002/ejic.201000777Search in Google Scholar

89. Graeber, E. J., Rosenzweig, A.: The crystal structures of yavapaiite, KFe(SO4)2, and goldichite KFe(SO4)2(H2O)4. Am. Mineral. 56, 1917 (1971).Search in Google Scholar

90. Linthout, K.: Tripartite division of the system 2REEPO4 – CaTh(PO4)2 – 2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can. Mineral. 45, 503 (2007).10.2113/gscanmin.45.3.503Search in Google Scholar

91. Beall, G., Boatner, L., Mullica, D., Milligan, W.: The structure of cerium orthophosphate, a synthetic analogue of monazite. J. Inorg. Nucl. Chem. 43, 101 (1981).10.1016/0022-1902(81)80443-5Search in Google Scholar

92. Popa, K., Wallez, G., Raison, P. E., Bregiroux, D., Apostolidis, C., Lindqvist-Reis, P., Konings, R. J. M.: SrNp(PO4)2: an original ordered modification of cheralite. Inorg. Chem. 49, 6904 (2010).10.1021/ic100376uSearch in Google Scholar PubMed

93. Podor, R., Cuney, M.: Experimental study of Th-bearing LaPO4 (780 °C, 200 MPa): implications for monazite and actinide orthophosphate stability. Am. Mineral. 82, 765 (1997).10.2138/am-1997-7-815Search in Google Scholar

94. Dusausoy, Y., Ghermani, N.-E., Podor, R., Cuney, M.: Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure. Eur. J. Mineral. 8, 667–673 (1996).10.1127/ejm/8/4/0667Search in Google Scholar

95. Podor, R., Cuney, M., Trung, C. N.: Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780 °C and 200 MPa. Am. Mineral. 80, 1261 (1995).10.2138/am-1995-11-1215Search in Google Scholar

96. Terra, O., Dacheux, N., Clavier, N., Podor, R., Audubert, F.: Preparation of optimized uranium and thorium bearing brabantite or monazite/brabantite solid solutions. J. Am. Ceram. Soc. 91, 3673 (2008).10.1111/j.1551-2916.2008.02678.xSearch in Google Scholar

97. Tabuteau, A., Pagès, M., Livet, J., Musikas, C.: Monazite-like phases containing transuranium elements (neptunium and plutonium). J. Mater. Sci. Lett. 7, 1315 (1988).10.1007/BF00719969Search in Google Scholar

98. Raison, P. E., Jardin, R., Bouëxière, D., Konings, R. J. M., Geisler, T., Pavel, C. C., Rebizant, J., Popa, K.: Structural investigation of the synthetic CaAn(PO4)2 (An=Th and Np) cheralite-like phosphates. Phys. Chem. Miner. 35, 603 (2008).10.1007/s00269-008-0252-4Search in Google Scholar

99. Bregiroux, D., Terra, O., Audubert, F., Dacheux, N., Serin, V., Podor, R., Bernache-Assollant, D.: Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg. Chem. 46, 10372 (2007).10.1021/ic7012123Search in Google Scholar PubMed

100. Poitrasson, F., Chenery, S., Bland, D. J.: Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci. Lett. 145, 79 (1996).10.1016/S0012-821X(96)00193-8Search in Google Scholar

101. Terra, O.: Incorporation d’actinides tétravalents dans trois matrices phosphatées: britholite, monazite/brabantite et Phosphate-Diphosphate de Thorium (Bêta-PDT). PhD-thesis, Université Paris Sud-Paris XI, Paris (2005).Search in Google Scholar

102. Deschanels, X., Picot, V., Glorieux, B., Jorion, F., Peuget, S., Roudil, D., Jégou, C., Broudic, V., Cachia, J. N., Advocat, T., Den Auwer, C., Fillet, C., Coutures, J. P., Hennig, C., Scheinost, A.: Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment. J. Nucl. Mater. 352, 233 (2006).10.1016/j.jnucmat.2006.02.059Search in Google Scholar

103. Brandel, V., Dacheux, N.: Chemistry of tetravalent actinide phosphates—part II. J. Solid State Chem. 177, 4755 (2004).10.1016/j.jssc.2004.08.008Search in Google Scholar

104. Qin, D., Mesbah, A., Gausse, C., Szenknect, S., Dacheux, N., Clavier, N.: Incorporation of thorium in the rhabdophane structure: synthesis and characterization of CaxThxPr1-2xPO4·nH2O solid solutions. J. Nucl. Mater. 492, 88 (2017).10.1016/j.jnucmat.2017.05.019Search in Google Scholar

105. Bénard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louër, D., Quarton, M.: Th2(PO4)4P2O7, a new thorium phosphate: synthesis, characterization, and structure determination. Chem. Mater. 8, 181 (1996).10.1021/cm950302dSearch in Google Scholar

106. Dacheux, N., Podor, R., Chassigneux, B., Brandel, V., Genet, M.: Actinides immobilization in new matrices based on solid solution: Th4-xMIVx(PO4)4P2O7. (MIV=238U, 239Pu). J. Alloys Compd. 271–273, 236 (1998).10.1016/S0925-8388(98)00061-9Search in Google Scholar

107. Dacheux, N., Podor, R., Brandel, V., Genet, M.: Investigations of systems ThO2-MO2-P2O5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates. J. Nucl. Mater. 252, 179 (1998).10.1016/S0022-3115(97)00337-1Search in Google Scholar

108. Dacheux, N., Thomas, A. C., Brandel, V., Genet, M.: Investigations of systems ThO2-NpO2-P2O5. Solid solutions of thorium-neptunium (IV) and thorium-plutonium (IV) phosphate-diphosphates. J. Nucl. Mater. 257, 108 (1998).10.1016/S0022-3115(98)00443-7Search in Google Scholar

109. Brandel, V., Dacheux, N., Genet, M., Podor, R.: Hydrothermal synthesis and characterization of the thorium phosphate hydrogenphosphate, thorium hydroxide phosphate, and dithorium oxide phosphate. J. Solid State Chem. 159, 139 (2001).10.1006/jssc.2001.9143Search in Google Scholar

110. Qin, D., Gausse, C., Szenknect, S., Mesbah, A., Clavier, N., Dacheux, N.: Solubility product of the thorium phosphate hydrogen-phosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH). J. Chem. Thermodyn. 114, 151 (2017).10.1016/j.jct.2017.01.003Search in Google Scholar

111. Clavier, N., Dacheux, N., Podor, R.: Synthesis, characterization, sintering, and leaching of β-TUPD/monazite radwaste matrices. Inorg. Chem. 45, 220 (2006).10.1021/ic051607pSearch in Google Scholar PubMed

112. Dacheux, N., Grandjean, S., Rousselle, J., Clavier, N.: Hydrothermal method of preparation of actinide(IV) phosphate hydrogenphosphate hydrates and study of their conversion into actinide(IV) phosphate diphosphate solid solutions. Inorg. Chem. 46, 10390 (2007).10.1021/ic701297vSearch in Google Scholar PubMed

113. Boyer, L., Savariault, J.-M., Carpena, J., Lacout, J.-L.: A neodymium-substituted britholite compound. Acta Crystallogr. C 54, 1057 (1998).10.1107/S0108270197019306Search in Google Scholar

114. Sere, V.: Géochimie des minéraux néoformés à Oklo (Gabon), histoire géologique du bassin d‘Oklo: une contribution pour les études de stockages géologiques de déchets radioactifs, Université de Paris VII, Paris (1996).Search in Google Scholar

115. Terra, O., Dacheux, N., Audubert, F., Podor, R.: Synthesis and characterization of thorium-bearing britholites. J. Nucl. Mater. 352, 224 (2006).10.1016/j.jnucmat.2006.02.094Search in Google Scholar

116. Terra, O., Audubert, F., Dacheux, N., Guy, C., Podor, R.: Synthesis and characterization of uranium-bearing britholites. J. Nucl. Mater. 366, 70 (2007).10.1016/j.jnucmat.2006.12.047Search in Google Scholar

117. Bulanov, E. N., Wang, J., Knyazev, A. V., White, T., Manyakina, M. E., Baikie, T., Lapshin, A. N., Dong, Z.: Structure and thermal expansion of calcium-thorium apatite, [Ca4]F[Ca2Th4]T[(SiO4)6]O2. Inorg. Chem. 54, 11356 (2015).10.1021/acs.inorgchem.5b01977Search in Google Scholar PubMed

118. Boyer, L., Piriou, B., Carpena, J., Lacout, J.: Study of sites occupation and chemical environment of Eu3+ in phosphate-silicates oxyapatites by luminescence. J. Alloys Compd. 311, 143 (2000).10.1016/S0925-8388(00)01085-9Search in Google Scholar

119. Achille, V. L.: Etude par modélisation atomistique de l‘incorporation de lanthanides dans le réseau cristallin d‘une apatite phosphocalcique, Université Paris VI, Paris (1999).Search in Google Scholar

120. Meis, C.: Computational study of plutonium–neodymium fluorobritholite Ca9Nd0.5Pu0.5(SiO4)(PO4)5F2 thermodynamic properties and threshold displacement energies. J. Nucl. Mater. 289, 167 (2001).10.1016/S0022-3115(00)00694-2Search in Google Scholar

121. Vance, E. R., Ball, C. J., Begg, B. D., Carter, M. L., Day, R. A., Thorogood, G. J.: Pu, U, and Hf incorporation in Gd silicate apatite. J. Am. Ceram. Soc. 86, 1223 (2003).10.1111/j.1151-2916.2003.tb03455.xSearch in Google Scholar

122. Brownfield, M. E., Foord, E. E., Sutley, S. J., Botinelly, T.: Kosnarite, KZr2(PO4)3, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine. Am. Mineral. 78, 653 (1993).Search in Google Scholar

123. Orlova, A. I., Kitaev, D. B., Orlova, M. P., Bykov, D. M., Orlova, V. A., Tomilin, S. V., Lizin, A. A., Lukinich, A. N., Stefanovsky, S. V.: Synthesis and investigations of the phosphates of Th, U, Np, Pu, Am, and lanthanides with monazite, zircon, kosnarite and langbeinite mineral-like structures. In: R. Alvarez, N. D. Bryan, I. May (Eds.), Recent Advances in Actinide Science (Special Publication No. 305), RSC Publishing, Cambridge, UK (2006), p. 454.10.1039/BK9780854046782-00454Search in Google Scholar

124. Kato, T.: The crystal structure of florencite. Neues Jahrb. Mineral. Monatsh. 5, 227 (1990).Search in Google Scholar

125. Montel, J.-M.: Minerals and design of new waste forms for conditioning nuclear waste. C. R. Geosci. 343, 230 (2011).10.1016/j.crte.2010.11.006Search in Google Scholar

126. Byrappa, K.: Preparative methods and growth of rare earth phosphates. Prog. Cryst. Growth 13, 163 (1986).10.1016/0146-3535(86)90019-5Search in Google Scholar

127. Orlova, A. I., Kitaev, D. B., Kemenov, D. V., Orlova, M. P., Kazantsev, G. N., Samoilov, S. G., Kurazhkovskaya, V. S.: Synthesis and crystal-chemical properties of phosphates BIIRIIIMIV(PO4)3 containing f, d, and alkaline-earth elements. Radiochemistry 45, 103 (2003).10.1023/A:1023889720492Search in Google Scholar

128. Boyer, L., Carpena, J., Lacout, J.: Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ion. 95, 121 (1997).10.1016/S0167-2738(96)00571-1Search in Google Scholar

129. Boakye, E. E., Mogilevsky, P.: Synthesis of nanosized spherical rhabdophane particles. J. Am. Ceram. Soc. 88, 2740 (2005).Search in Google Scholar

130. Lucas, S., Champion, E., Bregiroux, D., Bernache-Assollant, D., Audubert, F.: Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) – part I. Synthesis and characterization. J. Solid State Chem. 177, 1302 (2004).10.1016/j.jssc.2003.11.003Search in Google Scholar

131. Meyssamy, H., Riwotzki, K., Kornovski, A., Naused, S., Hause, M.: Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb. Adv. Mater. 11, 840 (1999).10.1002/(SICI)1521-4095(199907)11:10<840::AID-ADMA840>3.0.CO;2-2Search in Google Scholar

132. Bingham, P. A., Hand, R. J., Stennett, M. C., Hyatt, N. C., Harrison, M. T.: The use of surrogates in waste immobilization studies: a case of plutonium. Mater. Res. Soc. Symp. Proc. 1107, 421 (2008).10.1557/PROC-1107-421Search in Google Scholar

133. Lide, D. R.: CRC Handbook of Chemistry and Physics, 72nd ed. CRC Press, Boca Raton (1991–1992), Section 8, p. 17–22.Search in Google Scholar

134. Vance, E. R., Dorji, T. C., Gregg, D. J.: Synroc development – past and present applications. MRS Energy Sustain. 4, https://doi.org/10.1557/mre.2017.9 (2017).10.1557/mre.2017.9Search in Google Scholar

135. Gombert, D., Richardson, J. R.: Cold crucible induction melter design and development. Nucl. Technol. 14, 301 (2003).10.13182/NT03-A3368Search in Google Scholar

136. Sobolev, I. A., Stefanovsky, S. V., Yudintsev, B. I., Nikonov, B. S., Mokhov, A. V.: Study of melted Synroc doped with simulated high-level waste. In: W. J. Gray, I. R. Triay (Eds.), Scientific Basis for Nuclear Waste Management XX, Materials Research Society, Warrendale, PA (1997), p. 363.10.1557/PROC-465-363Search in Google Scholar

137. Sobolev, I. A., Stefanovsky, S. V., Emelianenko, B. I., Yudintsev, S., Vance, E. R., Jostsons, A.: Comparative study of Synroc-C ceramics produced by hot-pressing and inductive melting. In: W. J. Gray, I. R. Triay (Eds.), Scientific Basis for Nuclear Waste Management XX. Materials Research Society, Warrendale, PA (1997), p. 371.10.1557/PROC-465-371Search in Google Scholar

138. Yudintsev, S. V., Stefanovsky, S. V., Kalenova, M. Y., Nikonov, B. S., Nikol’skii, M. S., Koshcheev, A. M., Shchepin, A. S.: Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry 57, 321 (2015).10.1134/S1066362215030133Search in Google Scholar

139. Vance, E. R.: Ceramic waste forms. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier Ltd., Amsterdam (2012), Vol. 5, p. 485.10.1016/B978-0-08-056033-5.00108-7Search in Google Scholar

140. Li, H., Zhang, Y., McGlinn, P. J., Moricca, S., Begg, B. D., Vance, E. R.: Characterisation of stainless steel–synroc interactions under hot isostatic pressing (HIPing) conditions. J. Nucl. Mater. 355, 136 (2006).10.1016/j.jnucmat.2006.05.014Search in Google Scholar

141. Zhang, Y., Li, H., McGlinn, P. J., Yang, B., Begg, B. D.: Stainless steel/glass–ceramic interactions under hot isostatic pressing (HIPing) conditions. J. Nucl. Mater. 375, 315 (2008).10.1016/j.jnucmat.2007.10.018Search in Google Scholar

142. Zhang, Y., Li, H., Moricca, S. J.: Pyrochlore-structured titanate ceramics for immobilisation of actinides: hot isostatic pressing (HIPing) and stainless steel/waste form interactions. Nucl. Mater. 377, 470 (2008).10.1016/j.jnucmat.2008.03.022Search in Google Scholar

143. Ma, J., Teng, Y., Wu, L., Zhang, K., Huang, Y., Zhao, X., Wang, G.: Effect of sintering technique on mechanical property and chemical durability of Ce0.5Pr0.5PO4 ceramics. Ceram. Int. 41, 14597 (2015).10.1016/j.ceramint.2015.07.178Search in Google Scholar

144. Bregiroux, D., Audubert, F., Bernache-Assollant, D.: Densification and grain growth during solid state sintering of LaPO4. Ceram. Int. 35, 1115 (2009).10.1016/j.ceramint.2008.05.005Search in Google Scholar

145. McCarthy, G. J., White, W. B., Pfoertsch, D. E.: Synthesis of nuclear waste monazites: ideal actinide hosts for geologic disposal. Mater. Res. Bull. 13, 1239 (1978).10.1016/0025-5408(78)90215-5Search in Google Scholar

146. Babelot, C., Bukaemskiy, A., Neumeier, S., Modolo, G., Bosbach, D.: Crystallization processes, compressibility, sinterability and mechanical properties of La-monazite-type ceramics. J. Eur. Ceram. Soc. 37, 1681 (2017).10.1016/j.jeurceramsoc.2016.11.047Search in Google Scholar

147. Morgan, P., Housley, R., Davis, J., DeHaan, M.: Chemical and Ceramic Methods Toward Safe Storage of Actinides, Rockwell Scientific, Thousand Oaks, CA (2005).10.2172/850364Search in Google Scholar

148. Ma, J., Teng, Y., Huang, Y., Wu, L., Zhang, K., Zhao, X.: Effects of sintering process, pH and temperature on chemical durability of Ce0.5Pr0.5PO4 ceramics. J. Nucl. Mater. 465, 550 (2015).10.1016/j.jnucmat.2015.06.046Search in Google Scholar

149. Teng, Y., Wang, X., Huang, Y., Wu, L., Zeng, P.: Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics. Ceram. Int. 41, 10057 (2015).10.1016/j.ceramint.2015.04.095Search in Google Scholar

150. Teng, Y., Zeng, P., Huang, Y., Wu, L., Wang, X.: Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability. J. Nucl. Mater. 465, 482 (2015).10.1016/j.jnucmat.2015.06.044Search in Google Scholar

151. Zhao, X., Teng, Y., Wu, L., Huang, Y., Ma, J., Wang, G.: Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: effects of temperature and pH values. J. Nucl. Mater. 466, 187 (2015).10.1016/j.jnucmat.2015.08.012Search in Google Scholar

152. Zhao, X., Teng, Y., Yang, H., Huang, Y., Ma, J.: Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram. Int. 41, 11062 (2015).10.1016/j.ceramint.2015.05.051Search in Google Scholar

153. Du, A., Qu, Z. X., Wan, C. L., Han, R. B., Pan, W.: In effects of processing parameters of SPS on the densification and texture of LaPO4 ceramics. Key Engineering Materials, Trans. Tech. Publ. 368–372, 1059 (2008).10.4028/www.scientific.net/KEM.368-372.1059Search in Google Scholar

154. Du, A., Wan, C., Qu, Z., Pan, W.: Thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92, 2687 (2009).10.1111/j.1551-2916.2009.03244.xSearch in Google Scholar

155. Du, A., Wan, C., Qu, Z., Wu, R., Pan, W.: Effects of texture on the thermal conductivity of the LaPO4 monazite. J. Am. Ceram. Soc. 93, 2822 (2010).10.1111/j.1551-2916.2010.03779.xSearch in Google Scholar

156. Popa, K., Cologna, M., Martel, L., Staicu, D., Cambriani, A., Ernstberger, M., Raison, P. E., Somers, J.: CaTh(PO4)2 cheralite as a candidate ceramic nuclear waste form: spark plasma sintering and physicochemical characterization. J. Eur. Ceram. Soc. 36, 4115 (2016).10.1016/j.jeurceramsoc.2016.07.016Search in Google Scholar

157. Dacheux, N., Chassigneux, B., Brandel, V., Le Coustumer, P., Genet, M., Cizeron, G.: Reactive sintering of the thorium phosphate-diphosphate. Study of physical, thermal, and thermomechanical properties and chemical durability during leaching tests. Chem. Mater. 14, 2953 (2002).10.1021/cm011277gSearch in Google Scholar

158. Clavier, N., Dacheux, N., Martinez, P., Du Fou de Kerdaniel, E., Aranda, L., Podor, R.: Sintering of β-thorium-uranium(IV) phosphate-diphosphate solid solutions from low-temperature precursors. Chem. Mater. 16, 3357 (2004).10.1021/cm0494047Search in Google Scholar

159. Audubert, F., Bernache-Assolant, D.: Sintering investigation of silicate-apatite [Ca9Nd(SiO4)(PO4)5F2], In: P. Vincenzini (Ed.), Advances in Science and Technology – Proceedings of the 10th International Ceramics Congress - CIMTEC 2002. Part B, 31, 61 , Techna, Faenza (2003).Search in Google Scholar

160. Hirsch, A., Kegler, P., Alencar, I., Ruiz-Fuertes, J., Shelyug, A., Peters, L., Schreinemachers, C., Neumann, A., Neumeier, S., Liermann, H.-P., Navrotsky, A., Roth, G.: Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1−xPrxPO4. J. Solid State Chem. 245, 82 (2017).10.1016/j.jssc.2016.09.032Search in Google Scholar

161. de Biasi, R. S., Fernandes, A. A. R., Oliveira, J. C. S.: Cell volumes of LaPO4 – CePO4 solid-solutions. J. Appl. Crystallogr. 20, 319 (1987).10.1107/S0021889887086606Search in Google Scholar

162. Hou, Z. Y., Zhang, M. L., Wang, L. L., Lian, H. Z., Chai, R. T., Zhang, C. M., Cheng, Z. Y., Lin, J.: Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J. Solid State Chem. 182, 2332 (2009).10.1016/j.jssc.2009.06.005Search in Google Scholar

163. Heuser, J.: Keramiken des Monazit-Typs zur Immobilisierung von minoren Actinoiden und Plutonium. Ph.D. thesis, RWTH Aachen University, Aachen (2015).Search in Google Scholar

164. Wang, X., Teng, Y., Huang, Y., Wu, L., Zeng, P.: Synthesis and structure of Ce1-xEuxPO4 solid solutions for minor actinides immobilization. J. Nucl. Mater. 451, 147 (2014).10.1016/j.jnucmat.2014.03.049Search in Google Scholar

165. Yang, H., Teng, Y., Ren, X., Wu, L., Liu, H., Wang, S., Xu, L.: Synthesis and crystalline phase of monazite-type Ce1-xGdxPO4 solid solutions for immobilization of minor actinide curium. J. Nucl. Mater. 444, 39 (2014).10.1016/j.jnucmat.2013.09.010Search in Google Scholar

166. Begun, G. M., Beall, G. W., Boatner, L. A., Gregor, W. J.: Raman spectra of the rare earth orthophosphates. J. Raman Spectrosc. 11, 273 (1981).10.1002/jrs.1250110411Search in Google Scholar

167. Podor, R.: Raman spectra of the actinide-bearing monazites. Eur. J. Mineral. 7, 1353 (1995).10.1127/ejm/7/6/1353Search in Google Scholar

168. Silva, E. N., Ayala, A. P., Guedes, I., Paschoal, C. W. A., Moreira, R. L., Loong, C. K., Boatner, L. A.: Vibrational spectra of monazite-type rare-earth orthophosphates. Opt. Mater. 29, 224 (2006).10.1016/j.optmat.2005.09.001Search in Google Scholar

169. Thust, A., Arinicheva, Y., Haussühl, E., Ruiz-Fuertes, J., Bayarjargal, L., Vogel, S. C., Neumeier, S., Winkler, B.: Physical properties of La1−xEuxPO4, 0≤x≤1, monazite-type ceramics. J. Am. Ceram. Soc. 98, 4016 (2015).10.1111/jace.13841Search in Google Scholar

170. Kowalski, P. M., Beridze, G., Vinograd, V., Bosbach, D.: Heat capacities of lanthanide and actinide monazite-type ceramics. J. Nucl. Mater. 464, 147 (2015).10.1016/j.jnucmat.2015.04.032Search in Google Scholar

171. Jahn, S., Kowalski, P. M.: Theoretical approaches to structure and spectroscopy of earth materials. Rev. Mineral. Geochem. 78, 691 (2014).10.2138/rmg.2014.78.17Search in Google Scholar

172. Blanca-Romero, A., Kowalski, P. M., Beridze, G., Schlenz, H., Bosbach, D.: DFT+U studies of monazite-type ceramics: predicting structural and thermodynamic parameters. J. Comput. Chem. 35, 1339 (2014).10.1002/jcc.23618Search in Google Scholar PubMed

173. Beridze, G., Birnie, A., Koniski, S., Ji, Y., Kowalski, P. M.: DFT+U as a reliable method for efficient ab initio calculations of nuclear materials. Prog. Nucl. Energy 92, 142 (2016).10.1016/j.pnucene.2016.07.012Search in Google Scholar

174. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).10.1103/PhysRevLett.100.136406Search in Google Scholar PubMed

175. Cococcioni, M., de Gironcoli, S.: Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).10.1103/PhysRevB.71.035105Search in Google Scholar

176. Rustad, J. R.: Density functional calculations of the enthalpies of formation of rare-earth orthophosphates. Am. Mineral. 97, 791 (2012).10.2138/am.2012.3948Search in Google Scholar

177. Kowalski, P. M., Beridze, G., Li, Y., Ji, Y., Friedrich, C., Şaşıoğlu, E., Blügel, S.: Feasible and reliable ab initio approach to computation of materials relevant for nuclear waste management. Ceram. Trans. 258, 207 (2016).10.1002/9781119236016.ch21Search in Google Scholar

178. Kowalski, P. M., Beridze, G., Ji, Y., Li, Y.: Towards reliable modeling of challenging f-electrons bearing materials: experience from modeling of nuclear materials. MRS Adv. 2, 491 (2017).10.1557/adv.2017.46Search in Google Scholar

179. Feng, J., Xiao, B., Zhou, R., Pan, W.: Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 61, 7364 (2013).10.1016/j.actamat.2013.08.043Search in Google Scholar

180. Wang, J., Zhou, Y., Lin, Z.: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).10.1063/1.2005392Search in Google Scholar

181. Ali, K., Arya, A., Ghosh, P. S., Dey, G. K.: A first principle study of the pressure dependent elastic properties of monazite LaPO4. In: M. S. Shekhawat, S. Bhardwaj, B. Suthar (Eds.): International Conference on Condensed Matter and Applied Physics (ICC2015) (2016), p. 1728.10.1063/1.4946141Search in Google Scholar

182. Kowalski, P. M., Li, Y.: Relationship between the thermodynamic excess properties of mixing and the elastic moduli in the monazite-type ceramics. J. Eur. Ceram. Soc. 36, 2093 (2016).10.1016/j.jeurceramsoc.2016.01.051Search in Google Scholar

183. Ji, Y., Beridze, G., Li, Y., Kowalski, P. M.: Large scale simulations of nuclear waste materials. Energy Procedia 127, 416 (2017).10.1016/j.egypro.2017.08.108Search in Google Scholar

184. Gomis, O., Lavina, B., Rodriguez-Hernandez, P., Munoz, A., Errandonea, R., Errandonea, D., Bettinelli, M.: High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. J. Phys. Condens. Matter 29, 095401 (2017).10.1088/1361-648X/aa516aSearch in Google Scholar PubMed

185. Kowalski, P. M., Ji, Y., Li, Y., Arinicheva, Y., Beridze, G., Neumeier, S., Bukaemskiy, A., Bosbach, D.: Simulation of ceramic materials for nuclear waste management: case of La1-xEuxPO4 solid solution. Nucl. Instrum. Methods B 393, 68 (2017).10.1016/j.nimb.2016.09.029Search in Google Scholar

186. López-Solano, J., Rodriguez-Hernandez, P., Munoz, A., Gomis, O., Santamaria-Perez, D., Errandonea, D., Manjon, F. J., Kumar, R. S., Stavrou, E., Raptis, C.: Theoretical and experimental study of the structural stability of TbPO4 at high pressures. Phys. Rev. B 81, 144126 (2010).10.1103/PhysRevB.81.144126Search in Google Scholar

187. Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Munoz, A., Rodriguez-Hernandez, P., Lopez-Solano, J., Hanfland, M.: Effects of pressure on the structure and lattice dynamics of TmPO4: experiments and calculations. Phys. Rev. B 85, 024117 (2012).10.1103/PhysRevB.85.024117Search in Google Scholar

188. Shein, I. R., Shalaeva, E. V.: Pressure-induced zircon to monazite phase transition in Y1-xLaxPO4: first-principles calculations. J. Struct. Chem. 57, 1513 (2016).10.1134/S0022476616080047Search in Google Scholar

189. Bauer, J. D., Hirsch, A., Bayarjargal, L., Peters, L., Roth, G., Winkler, B.: Schottky contribution to the heat capacity of monazite type (La,Pr)PO4 from low temperature calorimetry and fluorescence measurements. Chem. Phys. Lett. 654, 97 (2016).10.1016/j.cplett.2016.05.012Search in Google Scholar

190. Li, Y., Kowalski, P. M., Beridze, G., Blanca-Romero, A., Ji, Y., Vinograd, V. L., Gale, J., Bosbach, D.: Atomistic simulations of ceramic materials relevant for nuclear waste management: cases of monazite and pyrochlore. Ceram. Trans. 255, 165 (2016).10.1002/9781119234531.ch15Search in Google Scholar

191. Ji, Y., Kowalski, P. M., Neumeier, S., Deismann, G., Kulriya, P. K., Gale, J. D.: Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics. Nucl. Instrum. Methods B. 393, 54 (2017).10.1016/j.nimb.2016.09.031Search in Google Scholar

192. Jolley, K., Asuvathraman, R., Smith, R.: Inter-atomic potentials for radiation damage studies in CePO4 monazite. Nucl. Instrum. Methods B 393, 93 (2017).10.1016/j.nimb.2016.10.016Search in Google Scholar

193. Huittinen, N., Arinicheva, Y., Kowalski, P. M., Vinograd, V. L., Neumeier, S., Bosbach, D.: Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148 (2017).10.1016/j.jnucmat.2017.01.024Search in Google Scholar

194. Gao, F., Xiao, H. Y., Zhou, Y. G., Devanathan, R., Hua, S. Y., Li, Y. L., Sun, X., Khaleel, M. A.: Ab initio study of defect properties in YPO4. Comput. Mater. Sci. 54, 170 (2012).10.1016/j.commatsci.2011.10.005Search in Google Scholar

195. Markus, I. M., Adelstein, N., Asta, M., De Jonghe, L. C.: Ab initio calculation of proton transport in DyPO4. J. Phys. Chem. C 118, 5073 (2014).10.1021/jp409962xSearch in Google Scholar

196. Chase, M. W. J.: NIST-JANAF thermochemical tables. American Inst. of Physics, New York (1998).Search in Google Scholar

197. Robie, R. A., Hemingway, B. S., Fisher, J. R.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 pascals) Pressure and at Higher Temperatures, U.S. Geological survey bulletin 2131, Washington, 459 pp. (1978).Search in Google Scholar

198. Yungman, V. S.: Thermal Constants of Substances, Begell House, Danbury, CT (1999).Search in Google Scholar

199. Navrotsky, A.: Progress and new directions in calorimetry: a 2014 perspective. J. Am. Ceram. Soc. 97, 3349 (2014).10.1111/jace.13278Search in Google Scholar

200. Navrotsky, A.: Mineralogy, materials science, energy, and environment: a 2015 perspective. Am. Mineral. 100, 674 (2015).10.2138/am-2015-5130Search in Google Scholar

201. Sarge, S. M., Höhne, G. W. H., Hemminger, W. F.: Calorimetry: Fundamentals, Instrumentation and Applications, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2014).10.1002/9783527649365Search in Google Scholar

202. Sedmidubský, D., Beneš, O., Konings, R. J. M.: High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J. Chem. Thermodyn. 37, 1098 (2005).10.1016/j.jct.2005.01.013Search in Google Scholar

203. Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).10.1007/BF00307526Search in Google Scholar

204. Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).10.1007/s002690050035Search in Google Scholar

205. Navrotsky, A.: High temperature oxide melt calorimetry of oxides and nitrides. In: “Huffman Lecture at ICCT 2000”. J. Chem. Thermodyn. 33, 859 (2001).10.1006/jcht.2000.0772Search in Google Scholar

206. Levchenko, A., Marchin, L., Parlouer, P. L., Navrotsky, A.: The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of alpha-CuMnO4. ITAS Bull. 2, 91 (2009).Search in Google Scholar

207. Ushakov, S. V., Navrotsky, A.: Experimental approaches to the thermodynamics of ceramics above 1500°C. J. Am. Ceram. Soc. 95, 1463 (2012).10.1111/j.1551-2916.2012.05102.xSearch in Google Scholar

208. Popa, K., Sedmidubský, D., Beneš, O., Thiriet, C., Konings, R. J. M.: The high-temperature heat capacity of LnPO4 (Ln=La, Ce, Gd) by drop calorimetry. J. Chem. Thermodyn. 38, 825 (2006).10.1016/j.jct.2005.08.019Search in Google Scholar

209. Popa, K., Jutier, F., Wastin, F., Konings, R. J. M.: The heat capacity of NdPO4. J. Chem. Thermodyn. 38, 1306 (2006).10.1016/j.jct.2006.02.006Search in Google Scholar

210. Navrotsky, A., Lee, W., Mielewczyk-Gryn, A., Ushakov, S. V., Anderko, A., Wu, H., Riman, R. E.: Thermodynamics of solid phases containing rare earth oxides. J. Chem. Thermodyn. 88, 126 (2015).10.1016/j.jct.2015.04.008Search in Google Scholar

211. Gavrichev, K. S., Gurevich, V. M., Ryumin, M. A., Tyrin, A. V., Komissarova, l. N.: Low-temperature heat capacity and thermodynamic properties of PrPO4. Geochem. Int. 54, 362 (2016).10.1134/S001670291602004XSearch in Google Scholar

212. Ushakov, S. V., Navrotsky, A., Farmer, J. M., Boatner, L. A.: Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. J. Mater. Res. 19, 2165 (2004).10.1557/JMR.2004.0283Search in Google Scholar

213. Konings, R. J. M., Walter, M., Popa, K.: Excess properties of the (Ln2-2xCaxThx)(PO4)2 (Ln=La, Ce) solid solutions. J. Chem. Thermodyn. 40, 1305 (2008).10.1016/j.jct.2008.03.009Search in Google Scholar

214. Rawat, D., Phapale, S., Mishra, R., Dash, S.: Thermodynamics studies on charge-coupled substituted synthetic monazite. J. Nucl. Mater. 487, 406 (2017).10.1016/j.jnucmat.2017.02.033Search in Google Scholar

215. Geisler, T., Popa, K., Konings, R. J. M.: Evidence for lattice strain and non-ideal behavior in the (La1−xEux)PO4 solid solution from X-ray diffraction and vibrational spectroscopy. Front. Earth Sci. 4, Article 64 (2016).10.3389/feart.2016.00064Search in Google Scholar

216. Li, Y., Kowalski, P. M., Blanca-Romero, A., Vinograd, V., Bosbach, D.: Ab initio calculation of excess properties of La1−x(Ln,An)xPO4 solid solutions. J. Solid State Chem. 220, 137 (2014).10.1016/j.jssc.2014.08.005Search in Google Scholar

217. Mogilevsky, P., Boakye, E. E.: Solid solubility and thermal expansion in a LaPO4–YPO4 system. J. Am. Ceram. Soc. 90, 1899 (2007).10.1111/j.1551-2916.2007.01653.xSearch in Google Scholar

218. Thiriet, C., Konings, R. J. M., Wastin, F.: Low temperature heat capacity of PuPO4. J. Nucl. Mater. 344, 56 (2005).10.1016/j.jnucmat.2005.04.016Search in Google Scholar

219. Beneš, O., Popa, K., Reuscher, V., Zappia, A., Staicu, D., Konings, R. J. M.: High temperature heat capacity of PuPO4monazite-analogue. J. Nucl. Mater. 418, 182 (2011).10.1016/j.jnucmat.2011.06.037Search in Google Scholar

220. Popa, K., Shvareva, T., Mazeina, L., Colineau, E., Wastin, F., Konings, R. J. M., Navrotsky, A.: Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. Am. Mineral. 93, 1356 (2008).10.2138/am.2008.2794Search in Google Scholar

221. Meldrum, A., Cherniak, D.: Ion beams in the geological sciences. In: H. Bernas (Ed.), Materials Science with Ion Beams. Topics in Applied Physics, Springer, Berlin Heidelberg (2010), Vol. 116, p. 317.10.1007/978-3-540-88789-8_11Search in Google Scholar

222. Deschanels, X., Seydoux-Guillaume, A., Magnin, V., Mesbah, A., Tribet, M., Moloney, M., Serruys, Y., Peuget, S.: Swelling induced by alpha decay in monazite and zirconolite ceramics: a XRD and TEM comparative study. J. Nucl. Mater. 448, 184 (2014).10.1016/j.jnucmat.2014.02.003Search in Google Scholar

223. Luo, J. S., Liu, G. K.: Microscopic effects of self-radiation damage in 244Cm-doped LuPO4 crystals. J. Mater. Res. 16, 366 (2001).10.1557/JMR.2001.0056Search in Google Scholar

224. Weber, W. J., Ewing, R. C., Wang, L.-M.: The radiation-induced crystalline to amorphous transition in zircon. J. Mater. Res. 9, 688 (1994).10.1557/JMR.1994.0688Search in Google Scholar

225. Karioris, F. G., Gowda, K. A., Cartz, L.: Heavy ion bombardment of monoclinic ThSiO4, ThO2 and monazite. Radiat. Eff. Lett. 58, 1 (1981).10.1080/01422448108226520Search in Google Scholar

226. Meldrum, A., Wang, L. M., Ewing, R. C.: Ion beam induced amorphisation of monazite. Nucl. Instrum. Methods B 116, 220 (1996).10.1016/0168-583X(96)00037-7Search in Google Scholar

227. Boatner, L., Sales, B.: Monazite. In: W. Lutze, R. C. Ewing, (Eds.), Radioactive Waste Forms for the Future, North Holland, Amsterdam (1988).Search in Google Scholar

228. Meldrum, A., Boatner, L. A., Ewing, R. C.: Displacive radiation effects in monazite- and zircon-structure orthophosphates. Phys. Rev. B 56, 13805 (1997).10.1103/PhysRevB.56.13805Search in Google Scholar

229. Meldrum, A., Boatner, L. A., Zinkle, S. J., Wang, S.-X., Wang, L.-M., Ewing, R. C.: Effects of dose rate and temperature on the crystallie-to-metamict transformation in the ABO4 orthosilicates. Can. Mineral. 37, 207 (1999).Search in Google Scholar

230. Weber, W. J., Roberts, F. P.: A review of radiation effects in solid nuclear waste forms. Nucl. Technol. 60, 178 (1983).10.13182/NT83-A33073Search in Google Scholar

231. Nasdala, L., Grotzschel, R., Probst, S., Bleisteiner, B.: Irradiation damage in monazite-(Ce): an example to establish the limits of Raman confocality and depth resolution. Can. Mineral. 48, 351 (2010).10.3749/canmin.48.2.351Search in Google Scholar

232. Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A. M., Wirth, R.: Ion beam radiation effects in monazite. J. Nucl. Mater. 381, 290 (2008).10.1016/j.jnucmat.2008.09.001Search in Google Scholar

233. Biersack, J. P., Haggmark, L. G.: A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257 (1980).10.1016/0029-554X(80)90440-1Search in Google Scholar

234. Ziegler, J. F., Biersack, J. P., Ziegler, M. D.: The stopping and range of ions in matter. Ion Implantation Press (2008), 398 pp.10.1007/978-1-4615-8103-1_3Search in Google Scholar

235. Ziegler, J. F., Ziegler, M. D., Biersack, J. P.: SRIM – the stopping and range of ions in matter. Nucl. Instrum. Methods B 268, 1818 (2010).10.1016/j.nimb.2010.02.091Search in Google Scholar

236. Tamain, C., Özgümüs, A., Dacheux, N., Garrido, F., Thomé, L.: Effects of irradiation on the thorium phosphate diphosphate ceramics and consequences on its dissolution. J. Nucl. Mater. 352, 217 (2006).10.1016/j.jnucmat.2006.02.057Search in Google Scholar

237. Tamain, C., Dacheux, N., Garrido, F., Habert, A., Barré, N., Özgümüs, A., Thomé, L.: Consequences of the ion beam irradiation on the chemical durability of thorium phosphate diphosphate – kinetics study. J. Nucl. Mater. 358, 190 (2006).10.1016/j.jnucmat.2006.07.007Search in Google Scholar

238. Tamain, C., Dacheux, N., Garrido, F., Thomé, L.: Irradiation effects on thorium phosphate diphosphate: chemical durability and thermodynamic study. J. Nucl. Mater. 362, 459 (2007).10.1016/j.jnucmat.2007.01.098Search in Google Scholar

239. Tamain, C., Garrido, F., Thomé, L., Dacheux, N., Özgümüs, A.: Structural behavior of β-thorium phosphate diphosphate (β-TPD) irradiated with ion beams. J. Nucl. Mater. 373, 378 (2008).10.1016/j.jnucmat.2007.06.017Search in Google Scholar

240. Robisson, A. C., Dacheux, N., Aupiais, J.: Influence of the pH on the dissolution of TPD and associated solid solutions. J. Nucl. Mater. 306, 134 (2002).10.1016/S0022-3115(02)01246-1Search in Google Scholar

241. Clavier, N., du Fou de Kerdaniel, E., Dacheux, N., Le Coustumer, P., Drot, R., Ravaux, J., Simoni, E.: Behavior of thorium-uranium (IV) phosphate-diphosphate sintered samples during leaching tests. Part II. Saturation processes. J. Nucl. Mater. 349, 304 (2006).10.1016/j.jnucmat.2005.11.010Search in Google Scholar

242. USDOE. MCC-1 Static Test: Nuclear Waste Materials Handbook. US-Report-No. DOE/TIC 11400, Material Characterization Centre, Hanford (1984).Search in Google Scholar

243. Pierce, E. M., McGrail, B. P., Martin, P. F., Marra, J., Arey, B. W., Geiszler, K. N.: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841 (2007).10.1016/j.apgeochem.2007.03.056Search in Google Scholar

244. Claparede, L., Clavier, N., Dacheux, N., Mesbah, A., Martinez, J., Szenknect, S., Moisy, P.: Multiparametric dissolution of thorium-cerium dioxide solid solutions. Inorg. Chem. 50, 11702 (2011).10.1021/ic201699tSearch in Google Scholar PubMed

245. Horlait, D., Tocino, F., Clavier, N., Dacheux, N., Szenknect, S.: Multiparametric study of Th1-xLnxO2-x/2 mixed oxides dissolution in nitric acid media. J. Nucl. Mater. 429, 237 (2012).10.1016/j.jnucmat.2012.05.047Search in Google Scholar

246. Horlait, D., Claperede, L., Tocino, F., Clavier, N., Ravaux, J., Szenknect, S., Podor, R., Dacheux, N.: Environmental SEM monitoring of Ce1-xLnxO2-x/2 mixed-oxide microstructural evolution during dissolution. J. Mater. Chem. A 2, 5193 (2014).10.1039/C3TA14623ESearch in Google Scholar

247. Claperede, L., Tocino, F., Szenknect, S., Mesbah, A., Clavier, N., Moisy, P., Dacheux, N.: Dissolution of Th1-xUxO2: effects of chemical composition and microstructure. J. Nucl. Mater. 457, 304 (2015).10.1016/j.jnucmat.2014.11.094Search in Google Scholar

248. Langmuir, D.: Aqueous Environmental Geochemistry, Upper Saddle River, N.J., Prentice Hall (1997), p. 600.Search in Google Scholar

249. du Fou de Kerdaniel, E.: Etude de la dissolution de britholites et de solutions solides monazite/brabantite dopées avec des actinides. Thèse de l‘Université Paris Sud-Paris XI, Paris (2007).Search in Google Scholar

250. Sales, B., White, C., Boatner, L.: A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste. Nucl. Chem. Waste Manage. 4, 281 (1983).10.1016/0191-815X(83)90053-0Search in Google Scholar

251. Ishida, M., Kikuchi, K., Yanagi, T., Terai, R.: Leaching behavior of crystalline phosphate waste forms. Nucl. Chem. Waste Manage. 6, 127 (1986).10.1016/0191-815X(86)90050-1Search in Google Scholar

252. Boatner, L., Abraham, M., Rappaz, M.: Analogs of monazite for the storage of radioactive wastes. Trans. Am. Nucl. Soc. 35, 186 (1980).Search in Google Scholar

253. Veilly, E., du Fou de Kerdaniel, E., Roques, J., Dacheux, N., Clavier, N.: Comparative behavior of britholites and monazite/brabantite solid solutions during leaching tests: a combined experimental and DFT approach. Inorg. Chem. 47, 10971 (2008).10.1021/ic801169dSearch in Google Scholar PubMed

254. Thomas, A., Dacheux, N., Le Coustumer, P., Brandel, V., Genet, M.: Kinetic and thermodynamic study of the thorium phosphate–diphosphate dissolution. J. Nucl. Mater. 281, 91 (2000).10.1016/S0022-3115(00)00391-3Search in Google Scholar

255. Thomas, A. C., Dacheux, N., Le Coustumer, P., Brandel, V., Genet, M.: Kinetic and thermodynamic studies of the dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions. J. Nucl. Mater. 295, 249 (2001).10.1016/S0022-3115(01)00534-7Search in Google Scholar

256. Dacheux, N.: Chimie des phosphates d‘actinides tétravalents. Le PDT en tant que matrice d‘immobilisation des actinides. Habilitation à Diriger des Recherches, Université Paris-Sud-11 (2002).Search in Google Scholar

257. Dacheux, N., Clavier, N., Ritt, J.: Behavior of thorium–uranium (IV) phosphate–diphosphate sintered samples during leaching tests. Part I – kinetic study. J. Nucl. Mater. 349, 291 (2006).10.1016/j.jnucmat.2005.11.009Search in Google Scholar

258. Dacheux, N., du Fou de Kerdaniel, E., Clavier, N., Podor, R., Aupiais, J., Szenknect, S.: Kinetics of dissolution of thorium and uranium doped britholites ceramics. J. Nucl. Mater. 404, 33 (2010).10.1016/j.jnucmat.2010.06.023Search in Google Scholar

259. Deissmann, G., Filby, A., Neumeier, S., Bosbach, D.: Solubility of lanthanidephosphates (LnPO4) and aqueous lanthanide speciation under repository relevant conditions. In: Symposium on Scientific Basis for Nuclear Waste Management XXXIX, MRS-Conference, Montpellier, France (2015).Search in Google Scholar

Received: 2017-5-8
Accepted: 2017-8-21
Published Online: 2017-10-12
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2017-2819/html
Scroll to top button