Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 3, 2018

Recent progress and challenges in membrane-based O2/N2 separation

  • Nurul F. Himma

    Nurul F. Himma received her bachelor’s degree in chemical engineering from Institut Teknologi Sepuluh Nopember, Indonesia, in 2013. In 2015, she completed her master’s degree from Institut Teknologi Bandung, Indonesia, under the supervision of Professor Wenten, and then worked as a research asisstant in Prof. Wenten’s laboratory. She is currently a lecturer in the Department of Chemical Engineering, Universitas Brawijaya, Indonesia. Her research interests include wastewater treatment and membrane development for environmental protection.

    , Anita K. Wardani

    Anita K. Wardani graduated with bachelor’s and master’s degrees in chemical engineering from Institut Teknologi Bandung in 2013 and 2016, respectively. She is currently a PhD student in chemical engineering, Institut Teknologi Bandung, under supervision of Prof. I Gede Wenten. Her research interests focus on modification of polypropylene for air separation, water treatment, and other filtration processes.

    , Nicholaus Prasetya

    Nicholaus Prasetya completed his bachelor’s degree in chemical engineering at Institut Teknologi Bandung (ITB). After working as a research assistant (at Research Center for Nanosciences and Nanotechnology, ITB) under Prof. Wenten’s supervision, he continued his master’s degree at Imperial College London as an awardee of Indonesia Endowment Fund for Education. He is currently a PhD student under the supervision of Dr. Bradley Ladewig at Imperial College London. His research is focused on development of light-responsive metal-organic framework (MOF) and membrane for gas separation.

    , Putu T.P. Aryanti

    Putu T.P. Aryanti received her PhD in chemical engineering from Institut Teknologi Bandung (Indonesia) in 2016 under the supervision of Prof. Wenten. Her master’s degree was received in 2002 from Institut Teknologi Sepuluh Nopember (ITS), Indonesia, and her bachelor’s degree from Institut Teknologi Nasional Malang (ITN Malang), Indonesia, in 1997. She joined the Chemical Engineering Department at Universitas Jenderal Achmad Yani (UNJANI), Indonesia, in 2016, and her current research interests include membrane preparation and modification.

    and I Gede Wenten

    I Gede Wenten received his bachelor in chemical engineering from Institut Teknologi Bandung (ITB), Indonesia, and MSc and PhD degrees from DTU Denmark. He is a professor of chemical engineering and a member of Research Center for Nanosciences and Nanotechnology, ITB. I G. Wenten has long time experience in membrane technology at both industrial and academic fields with a career spanning more than 20 years. He received several awards such as Suttle Award (1994), Toray Science and Technology Award (1996), ASEAN Outstanding Engineering Award (2010), and other national awards from academic and professional foundations. He is a founder of GDP Filter Indonesia – a membrane manufacturing company and also a founder of ASEAN Association on Membrane (Membrane Science and Technology conference).

    ORCID logo EMAIL logo

Abstract

Compared with current conventional technologies, oxygen/nitrogen (O2/N2) separation using membrane offers numerous advantages, especially in terms of energy consumption, footprint, and capital cost. However, low product purity still becomes the major challenge for commercialization of membrane-based technologies. Therefore, numerous studies on membrane development have been conducted to improve both membrane properties and separation performance. Various materials have been developed to obtain membranes with high O2 permeability and high O2/N2 selectivity, including polymer, inorganic, and polymer-inorganic composite materials. The results showed that most of the polymer membranes are suitable for production of low to moderate purity O2 and for production of high-purity N2. Meanwhile, perovskite membrane can be used to produce a high-purity oxygen. Furthermore, the developments of O2/N2 separation using membrane broaden the applications of oxygen enrichment for oxy-combustion, gasification, desulfurization, and intensification of air oxidation reactions, while nitrogen enrichment is also important for manufacturing pressure-sensitive adhesive and storing and handling free-radical polymerization monomers.

About the authors

Nurul F. Himma

Nurul F. Himma received her bachelor’s degree in chemical engineering from Institut Teknologi Sepuluh Nopember, Indonesia, in 2013. In 2015, she completed her master’s degree from Institut Teknologi Bandung, Indonesia, under the supervision of Professor Wenten, and then worked as a research asisstant in Prof. Wenten’s laboratory. She is currently a lecturer in the Department of Chemical Engineering, Universitas Brawijaya, Indonesia. Her research interests include wastewater treatment and membrane development for environmental protection.

Anita K. Wardani

Anita K. Wardani graduated with bachelor’s and master’s degrees in chemical engineering from Institut Teknologi Bandung in 2013 and 2016, respectively. She is currently a PhD student in chemical engineering, Institut Teknologi Bandung, under supervision of Prof. I Gede Wenten. Her research interests focus on modification of polypropylene for air separation, water treatment, and other filtration processes.

Nicholaus Prasetya

Nicholaus Prasetya completed his bachelor’s degree in chemical engineering at Institut Teknologi Bandung (ITB). After working as a research assistant (at Research Center for Nanosciences and Nanotechnology, ITB) under Prof. Wenten’s supervision, he continued his master’s degree at Imperial College London as an awardee of Indonesia Endowment Fund for Education. He is currently a PhD student under the supervision of Dr. Bradley Ladewig at Imperial College London. His research is focused on development of light-responsive metal-organic framework (MOF) and membrane for gas separation.

Putu T.P. Aryanti

Putu T.P. Aryanti received her PhD in chemical engineering from Institut Teknologi Bandung (Indonesia) in 2016 under the supervision of Prof. Wenten. Her master’s degree was received in 2002 from Institut Teknologi Sepuluh Nopember (ITS), Indonesia, and her bachelor’s degree from Institut Teknologi Nasional Malang (ITN Malang), Indonesia, in 1997. She joined the Chemical Engineering Department at Universitas Jenderal Achmad Yani (UNJANI), Indonesia, in 2016, and her current research interests include membrane preparation and modification.

I Gede Wenten

I Gede Wenten received his bachelor in chemical engineering from Institut Teknologi Bandung (ITB), Indonesia, and MSc and PhD degrees from DTU Denmark. He is a professor of chemical engineering and a member of Research Center for Nanosciences and Nanotechnology, ITB. I G. Wenten has long time experience in membrane technology at both industrial and academic fields with a career spanning more than 20 years. He received several awards such as Suttle Award (1994), Toray Science and Technology Award (1996), ASEAN Outstanding Engineering Award (2010), and other national awards from academic and professional foundations. He is a founder of GDP Filter Indonesia – a membrane manufacturing company and also a founder of ASEAN Association on Membrane (Membrane Science and Technology conference).

References

Abraham B, Asbury J, Lynch E, Teotia A. Coal-oxygen process provides CO2/for enhanced recovery. Oil Gas J 1982; 80: 11.Search in Google Scholar

Acharya M. Engineering design and theoretical analysis of nanoporous carbon membranes for gas separation. PhD Thesis, Univ. of Delaware, Newark, 1999.Search in Google Scholar

Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater 2010; 131: 13–20.10.1016/j.micromeso.2009.11.035Search in Google Scholar

Ahamparam S, Harrison S. Oxygen enrichment in desulphurisation. Pet Technol Q 2012; 17: 51–53.Search in Google Scholar

Air Products. Air separation technology – ion transport membrane (ITM). Allentown, PA: Air Products and Chemicals, Inc., 2008.Search in Google Scholar

Air Products. Advanced oxygen for energy intensive markets: ion transport membrane (ITM) oxyge. Allentown, PA: Air Products and Chemicals, Inc., 2013.Search in Google Scholar

Alsayed MFM. Oxygen enriched combustion of high emission fuels. ME thesis, An-Najah National University, 2008.Search in Google Scholar

Ariono D, Purwasasmita M, Wenten IG. Brine effluents: characteristics, environmental impacts, and their handling. J Eng Technol Sci 2016; 48: 367–387.10.5614/j.eng.technol.sci.2016.48.4.1Search in Google Scholar

Ariono D, Khoiruddin K, Subagjo S, Wenten IG. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane. Mater Res Express 2017; 4: 024006.10.1088/2053-1591/aa5cd4Search in Google Scholar

Arnold M, Xu Q, Tichelaar FD, Feldhoff A. Local charge disproportion in a high-performance perovskite. Chem Mater 2009; 21: 635–640.10.1021/cm802779fSearch in Google Scholar

Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM. Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 2010; 75: 229–242.10.1016/j.seppur.2010.08.023Search in Google Scholar

Aryanti P, Yustiana R, Purnama R, Wenten IG. Performance and characterization of PEG400 modified PVC ultrafiltration membrane. Membr Water Treat 2015; 6: 379–392.10.12989/mwt.2015.6.5.379Search in Google Scholar

Aryanti P, Joscarita SR, Wardani AK, Subagjo S, Ariono D, Wenten IG. The influence of PEG400 and acetone on polysulfone membrane morphology and fouling behaviour. J Eng Technol Sci 2016; 48: 135–149.10.5614/j.eng.technol.sci.2016.48.2.1Search in Google Scholar

Aryanti P, Sianipar M, Zunita M, Wenten IG. Modified membrane with antibacterial properties. Membr Water Treat 2017; 8: 463–481.Search in Google Scholar

Athayde DD, Souza DF, Silva AM, Vasconcelos D, Nunes EH, da Costa JCD, Vasconcelos WL. Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 2016; 42: 6555–6571.10.1016/j.ceramint.2016.01.130Search in Google Scholar

Baker RW. Future directions of membrane gas separation technology. Ind Eng Chem Res 2002; 41: 1393–1411.10.1021/ie0108088Search in Google Scholar

Baker RW. Membrane technology and applications, West Sussex, England: John Wiley & Sons Ltd, 2004.10.1002/0470020393Search in Google Scholar

Baker RW, Lokhandwala K. Natural gas processing with membranes: an overview. Ind Eng Chem Res 2008; 47: 2109–2121.10.1021/ie071083wSearch in Google Scholar

Baker RW, Low BT. Gas separation membrane materials: a perspective. Macromolecules 2014; 47: 6999–7013.10.1021/ma501488sSearch in Google Scholar

Barbosa-Coutinho E, Salim VM, Borges CP. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 2003; 41: 1707–1714.10.1016/S0008-6223(03)00129-5Search in Google Scholar

Belaissaoui B, Le Moullec Y, Hagi H, Favre E. Energy efficiency of oxygen enriched air production technologies: cryogeny vs membranes. Sep Purif Technol 2014; 125: 142–150.10.1016/j.seppur.2014.01.043Search in Google Scholar

Bernardo P, Clarizia G. 30 years of membrane technology for gas separation. Chem Eng Trans 2013; 32: 1999–2004.Search in Google Scholar

Bingue JP, Saveliev AV, Kennedy LA. Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion. Int J Hydrogen Energy 2004; 29: 1365–1370.10.1016/j.ijhydene.2004.01.002Search in Google Scholar

Borisov S, Khotimsky VS, Rebrov AI, Rykov SV, Slovetsky DI, Pashunin YM. Plasma fluorination of organosilicon polymeric films for gas separation applications. J Membr Sci 1997; 125: 319–329.10.1016/S0376-7388(96)00254-2Search in Google Scholar

Brisotto M, Cernuschi F, Drago F, Lenardi C, Rosa P, Meneghini C, Merlini M, Rinaldi C. High temperature stability of Ba0.5Sr0.5Co0.8Fe0.2O3–δ and La0.6Sr0.4Co1−yFeyO3–δ oxygen separation perovskite membranes. J Eur Ceram Soc 2016; 36: 1679–1690.10.1016/j.jeurceramsoc.2016.01.029Search in Google Scholar

Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D. Gas separation membranes from polymers of intrinsic microporosity. J Membr Sci 2005; 251: 263–269.10.1016/j.memsci.2005.01.009Search in Google Scholar

Budd PM, McKeown NB, Ghanem BS, Msayib KJ, Fritsch D, Starannikova L, Belov N, Sanfirova O, Yampolskii Y, Shantarovich V. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J Membr Sci 2008; 325: 851–860.10.1016/j.memsci.2008.09.010Search in Google Scholar

Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 2005; 31: 283–307.10.1016/j.pecs.2005.07.001Search in Google Scholar

Buonomenna MG, Yave W, Golemme G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Advances 2012; 2: 10745–10773.10.1039/c2ra20748fSearch in Google Scholar

Bushell AF, Attfield MP, Mason CR, Budd PM, Yampolskii Y, Starannikova L, Rebrov A, Bazzarelli F, Bernardo P, Jansen JC. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J Membr Sci 2013; 427: 48–62.10.1016/j.memsci.2012.09.035Search in Google Scholar

Camacho-Zuñiga C, Ruiz-Treviño FA, Hernández-López S, Zolotukhin MG, Maurer FHJ, González-Montiel A. Aromatic polysulfone copolymers for gas separation membrane applications. J Membr Sci 2009; 340: 221–226.10.1016/j.memsci.2009.05.033Search in Google Scholar

Centeno TA, Fuertes AB. Carbon molecular sieve gas separation membranes based on poly (vinylidene chloride-co-vinyl chloride). Carbon 2000; 38: 1067–1073.10.1016/S0008-6223(99)00214-6Search in Google Scholar

Chauhan R, Pandey P. Preparation of gas separation membranes and their evaluation. Def Sci J 2004; 54: 335.10.14429/dsj.54.2047Search in Google Scholar

Chen S-H, Chuang W-H, Wang AA, Ruaan R-C, Lai J-Y. Oxygen/nitrogen separation by plasma chlorinated polybutadiene/polycarbonate composite membrane. J Membr Sci 1997; 124: 273–281.10.1016/S0376-7388(96)00246-3Search in Google Scholar

Chen S-H, Yu K-C, Houng S-L, Lai J-Y. Gas transport properties of HTPB based polyurethane/cosalen membrane. J Membr Sci 2000; 173: 99–106.10.1016/S0376-7388(00)00357-4Search in Google Scholar

Chen J-T, Shih C-C, Fu Y-J, Huang S-H, Hu C-C, Lee K-R, Lai J-Y. Zeolite-filled porous mixed matrix membranes for air separation. Ind Eng Chem Res 2014; 53: 2781–2789.10.1021/ie403833uSearch in Google Scholar

Chong K, Lai S, Thiam H, Teoh H, Heng S. Recent progress of oxygen/nitrogen separation using membrane technology. J Eng Sci Technol 2016; 11: 1016–1030.Search in Google Scholar

Chung T-S, Kafchinski ER, Foley P. Development of asymmetric hollow fibers from polyimides for air separation. J Membr Sci 1992; 75: 181–195.10.1016/0376-7388(92)80016-DSearch in Google Scholar

Chung T-S, Kafchinski ER, Vora R. Development of a defect-free 6FDA-durene asymmetric hollow fiber and its composite hollow fibers. J Membr Sci 1994; 88: 21–36.10.1016/0376-7388(93)E0163-ESearch in Google Scholar

Chung TS, Teoh SK, Hu X. Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. J Membr Sci 1997; 133: 161–175.10.1016/S0376-7388(97)00101-4Search in Google Scholar

Clark GA, Rowan M. A feasibility study of using oxygen enrichment for fuel cell air independent propulsion. Melbourne: DSTO Aeronautical and Maritime Research Laboratory, 1996.Search in Google Scholar

Clausi DT, Koros WJ. Formation of defect-free polyimide hollow fiber membranes for gas separations. J Membr Sci 2000; 167: 79–89.10.1016/S0376-7388(99)00276-8Search in Google Scholar

Comesaña-Gándara B, Hernández A, de la Campa JG, de Abajo J, Lozano AE, Lee YM. Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes. J Membr Sci 2015; 493: 329–339.10.1016/j.memsci.2015.05.061Search in Google Scholar

Crider LB, O’Mara MM, Bowles RL. A model for the diffusion of vinyl chloride monomer from PVC under various conditions of storage. J Vinyl Technol 1979; 1: 168–171.Search in Google Scholar

Czech Z. Development of solvent-free pressure-sensitive adhesive acrylics. Int J Adhes Adhes 2004; 24: 119–125.10.1016/j.ijadhadh.2003.07.001Search in Google Scholar

Czech Z, Wesolowska M. Development of solvent-free acrylic pressure-sensitive adhesives. Eur Polym J 2007; 43: 3604–3612.10.1016/j.eurpolymj.2007.05.003Search in Google Scholar

David L, Ismail A. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J Membr Sci 2003; 213: 285–291.10.1016/S0376-7388(02)00513-6Search in Google Scholar

de Larramendi IR, Ortiz-Vitoriano N, Dzul-Bautista IB, Rojo T. Designing perovskite oxides for solid oxide fuel cells. In: Pan L, editor. Perovskite materials-synthesis, characterisation, properties, and applications. Rijeka: InTech, 2016: 589–617.Search in Google Scholar

Ding X, Cao Y, Zhao H, Wang L, Yuan Q. Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation. J Membr Sci 2008; 323: 352–361.10.1016/j.memsci.2008.06.042Search in Google Scholar

Domínguez-Domínguez S, Berenguer-Murcia A, Morallón E, Linares-Solano A, Cazorla-Amorós D. Zeolite LTA/carbon membranes for air separation. Microporous Mesoporous Mater 2008; 115: 51–60.10.1016/j.micromeso.2007.11.049Search in Google Scholar

Dong G, Li H, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A 2013; 1: 4610–4630.10.1039/c3ta00927kSearch in Google Scholar

Dong G, Woo KT, Kim J, Kim JS, Lee YM. Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications. J Membr Sci 2015; 496: 229–241.10.1016/j.memsci.2015.08.059Search in Google Scholar

Drioli E, Curcio E. Membrane engineering for process intensification: a perspective. J Chem Technol Biotechnol 2007; 82: 223–227.10.1002/jctb.1650Search in Google Scholar

Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification – an overview. J Membr Sci 2011; 380: 1–8.10.1016/j.memsci.2011.06.043Search in Google Scholar

Du N, Robertson GP, Song J, Pinnau I, Thomas S, Guiver MD. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 2008; 41: 9656–9662.10.1021/ma801858dSearch in Google Scholar

Duan C, Jie X, Liu D, Cao Y, Yuan Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J Membr Sci 2014; 466: 92–102.10.1016/j.memsci.2014.04.024Search in Google Scholar

Efimov K, Halfer T, Kuhn A, Heitjans P, Caro J, Feldhoff A. Novel cobalt-free oxygen-permeable perovskite-type membrane. Chem Mater 2010; 22: 1540–1544.10.1021/cm902882sSearch in Google Scholar

Ettouney HM, El-Dessouky HT, Abou Waar W. Separation characteristics of air by polysulfone hollow fiber membranes in series. J Membr Sci 1998; 148: 105–117.10.1016/S0376-7388(98)00144-6Search in Google Scholar

Fang W, Liang F, Cao Z, Steinbach F, Feldhoff A. A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability. Angew Chem Int Ed 2015a; 54: 4847–4850.10.1002/anie.201411963Search in Google Scholar PubMed

Fang W, Steinbach F, Chen C, Feldhoff A. An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chem Mater 2015b; 27: 7820–7826.10.1021/acs.chemmater.5b03823Search in Google Scholar

Fatemi SM, Sepehrian H, Arabieh M. Simulation studies of the separation of Kr-85 radionuclide gas from nitrogen and oxygen across nanoporous graphene membranes in different pore configurations. The European Physical Journal Plus 2016; 131: 131.10.1140/epjp/i2016-16131-6Search in Google Scholar

Fatyeyeva K, Dahi A, Chappey C, Langevin D, Valleton J-M, Poncin-Epaillard F, Marais S. Effect of cold plasma treatment on surface properties and gas permeability of polyimide films. RSC Advances 2014; 4: 31036–31046.10.1039/C4RA03741CSearch in Google Scholar

Favre E, Bounaceur R, Roizard D. A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture. Sep Purif Technol 2009; 68: 30–36.10.1016/j.seppur.2009.04.003Search in Google Scholar

Feng X, Ivory J, Rajan VSV. Air separation by integrally asymmetric hollow-fiber membranes. AICHE J 1999; 45: 2142–2152.10.1002/aic.690451013Search in Google Scholar

Fernández-Barquín A, Casado-Coterillo C, Valencia S, Irabien A. Mixed matrix membranes for O2/N2 separation: the influence of temperature. Membranes 2016; 6: 28.10.3390/membranes6020028Search in Google Scholar

Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999; 32: 375–380.10.1021/ma9814548Search in Google Scholar

Freeman BD, Pinnau I. Polymeric materials for gas separations. In: Freeman BD, Pinnau I, editors. Polymer membranes for gas and vapor separation. Washington, DC: American Chemical Society, 1999: 1–27.10.1021/bk-1999-0733Search in Google Scholar

Fritzsche AK, Murphy MK, Cruse CA, Malon RF, Kesting RE. Characterization of asymmetric hollow fibre membranes with graded-density skins. Gas Sep Purif 1989; 3: 106–116.10.1016/0950-4214(89)80020-9Search in Google Scholar

Fritzsche AK, Armbruster BL, Fraundorf PB, Pellegrin CJ. The structure of the effective separating layer of asymmetric hollow fiber membranes with graded density skins. J Appl Polym Sci 1990a; 39: 1915–1932.10.1002/app.1990.070390908Search in Google Scholar

Fritzsche AK, Cruse CA, Murphy MK, Kesting RE. Polyethersulfone and polyphenylsulfone hollow fiber trilayer membranes spun from Lewis acid:base complexes – structure determination by SEM, DSC, and oxygen plasma ablation. J Membr Sci 1990b; 54: 29–50.10.1016/S0376-7388(00)82068-2Search in Google Scholar

Fu Y-J, Qui H-z, Liao K-S, Lue SJ, Hu C-C, Lee K-R, Lai J-Y. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance. Langmuir 2010; 26: 4392–4399.10.1021/la903445xSearch in Google Scholar PubMed

Fu S, Wenz GB, Sanders ES, Kulkarni SS, Qiu W, Ma C, Koros WJ. Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes. J Membr Sci 2016; 520: 699–711.10.1016/j.memsci.2016.08.013Search in Google Scholar

Fuertes AB. Adsorption-selective carbon membrane for gas separation. J Membr Sci 2000; 177: 9–16.10.1016/S0376-7388(00)00458-0Search in Google Scholar

Fuertes A, Centeno T. Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Mater 1998; 26: 23–26.10.1016/S1387-1811(98)00204-2Search in Google Scholar

Gao D, Zhao J, Zhou W, Ran R, Shao Z. Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. J Membr Sci 2011; 366: 203–211.10.1016/j.memsci.2010.10.001Search in Google Scholar

Geffroy PM, Fouletier J, Richet N, Chartier T. Rational selection of MIEC materials in energy production processes. Chem Eng Sci 2013; 87: 408–433.10.1016/j.ces.2012.10.027Search in Google Scholar

George SC, Ninan KN, Thomas S. Permeation of nitrogen and oxygen gases through styrene-butadiene rubber, natural rubber and styrene-butadiene rubber/natural rubber blend membranes. Eur Polym J 2001; 37: 183–191.10.1016/S0014-3057(00)00083-5Search in Google Scholar

Ghanem BS, McKeown NB, Budd PM, Selbie JD, Fritsch D. High-performance membranes from polyimides with intrinsic microporosity. Adv Mater 2008; 20: 2766–2771.10.1002/adma.200702400Search in Google Scholar

Ghosal K, Freeman BD. Gas separation using polymer membranes: an overview. Polym Adv Technol 1994; 5: 673–697.10.1002/pat.1994.220051102Search in Google Scholar

Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf Physicochem Eng Aspects 2001; 187–188: 469–481.10.1016/S0927-7757(01)00616-1Search in Google Scholar

Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 2011; 81: 243–264.10.1016/j.seppur.2011.07.042Search in Google Scholar

Gupta Y, Hellgardt K, Wakeman RJ. Enhanced permeability of polyaniline based nano-membranes for gas separation. J Membr Sci 2006; 282: 60–70.10.1016/j.memsci.2006.05.014Search in Google Scholar

Han D, Tan X, Yan Z, Li Q, Liu S. New morphological Ba0.5Sr0.5Co0.8Fe0.2O3−α hollow fibre membranes with high oxygen permeation fluxes. Ceram Int 2013; 39: 431–437.10.1016/j.ceramint.2012.06.044Search in Google Scholar

Hasbullah H, Kumbharkar S, Ismail AF, Li K. Asymmetric hollow fibre membranes based on ring-substituted polyaniline and investigation towards its gas transport properties. J Membr Sci 2012; 397–398: 38–50.10.1016/j.memsci.2012.01.007Search in Google Scholar

Hashim SM, Mohamed AR, Bhatia S. Current status of ceramic-based membranes for oxygen separation from air. Adv Colloid Interface Sci 2010; 160: 88–100.10.1016/j.cis.2010.07.007Search in Google Scholar

Hassan MH, Douglas Way J, Thoen PM, Dillon AC. Single component and mixed gas transport in a silica hollow fiber membrane. J Membr Sci 1995; 104: 27–42.10.1016/0376-7388(95)00009-2Search in Google Scholar

He W, Liu J-j, Chen C-S, Ni M. Oxygen permeation modeling for Zr0.84Y0.16O1.92–La0.8Sr0.2Cr0.5Fe0.5O3−δ asymmetric membrane made by phase-inversion. J Membr Sci 2015; 491: 90–98.10.1016/j.memsci.2015.05.026Search in Google Scholar

Himma NF, Wenten IG. Surface engineering of polymer membrane for air separation. AIP Conf Proc, AIP Publishing, 2016; 1840: 090005.Search in Google Scholar

Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. J Polym Eng 2016; 36: 329–362.10.1515/polyeng-2015-0112Search in Google Scholar

Himma NF, Wardani AK, Wenten IG. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane. Mater Res Express 2017a; 4: 054001.10.1088/2053-1591/aa6ee0Search in Google Scholar

Himma NF, Wardani AK, Wenten IG. Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polym Plast Technol Eng 2017b; 56: 184–194.10.1080/03602559.2016.1185666Search in Google Scholar

Hopkins J, Badyal JPS. CF4 plasma treatment of asymmetric polysulfone membranes. Langmuir 1996; 12: 3666–3670.10.1021/la960038iSearch in Google Scholar

Hosseini SS, Omidkhah MR, Zarringhalam Moghaddam A, Pirouzfar V, Krantz WB, Tan NR. Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Sep Purif Technol 2014; 122: 278–289.10.1016/j.seppur.2013.11.021Search in Google Scholar

Hosseini SS, Najari S, Kundu PK, Tan NR, Roodashti SM. Simulation and sensitivity analysis of transport in asymmetric hollow fiber membrane permeators for air separation. RSC Advances 2015; 5: 86359–86370.10.1039/C5RA13943KSearch in Google Scholar

Houston KS, Weinkauf DH, Stewart FF. Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials. J Membr Sci 2002; 205: 103–112.10.1016/S0376-7388(02)00068-6Search in Google Scholar

Hsu KK, Nataraj S, Thorogood RM, Puri PS. O2/N2 Selectivity improvement for polytrimethylsilypropyne membranes by UV-irradiation and further enhancement by subambient temperature operation. J Membr Sci 1993; 79: 1–10.10.1016/0376-7388(93)85013-MSearch in Google Scholar

Hu C-C, Liu T-C, Lee K-R, Ruaan R-C, Lai J-Y. International Congress on Membranes and Membrane Processes. Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties. Desalination 2006; 193: 14–24.10.1016/j.desal.2005.04.137Search in Google Scholar

Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y. Mixed-matrix membrane hollow fibers of Cu3 (BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 2010; 49: 12605–12612.10.1021/ie1014958Search in Google Scholar

Huang A, Wang N, Caro J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous Mesoporous Mater 2012; 164: 294–301.10.1016/j.micromeso.2012.06.018Search in Google Scholar

Huber F, Springer J, Muhler M. Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen. J Appl Polym Sci 1997; 63: 1517–1526.10.1002/(SICI)1097-4628(19970321)63:12<1517::AID-APP2>3.0.CO;2-RSearch in Google Scholar

Ilconich JB, Xu X, Coleman M, Simpson PJ. Impact of ion beam irradiation on microstructure and gas permeance of polysulfone asymmetric membranes. J Membr Sci 2003; 214: 143–156.10.1016/S0376-7388(02)00543-4Search in Google Scholar

Illing G, Hellgardt K, Schonert M, Wakeman RJ, Jungbauer A. Towards ultrathin polyaniline films for gas separation. J Membr Sci 2005; 253: 199–208.10.1016/j.memsci.2004.12.031Search in Google Scholar

Inagaki N, Ohkubo J. Plasma polymerization of hexafluoropropene/methane mixtures and composite membranes for gas separations. J Membr Sci 1986; 27: 63–75.10.1016/S0376-7388(00)81382-4Search in Google Scholar

Isfahani AP, Sadeghi M, Dehaghani AHS, Aravand MA. Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. J Ind Eng Chem 2016; 44: 67–72.10.1016/j.jiec.2016.08.012Search in Google Scholar

Islam Q, Raja M, Basu R. LaxSr1−xCo0.35Bi0.2Fe0.45O3−δ (x=0.5 to 0.8): a new series of oxygen separation membrane. Int J Hydrogen Energy 2016; 41: 4682–4689.10.1016/j.ijhydene.2016.01.021Search in Google Scholar

Ismail AF, David LIB. A review on the latest development of carbon membranes for gas separation. J Membr Sci 2001; 193: 1–18.10.1016/S0376-7388(01)00510-5Search in Google Scholar

Ismail AF, Lai PY. Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep Purif Technol 2003; 33: 127–143.10.1016/S1383-5866(02)00201-0Search in Google Scholar

Ismail AF, Lai PY. Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology. Sep Purif Technol 2004; 40: 191–207.10.1016/j.seppur.2004.02.011Search in Google Scholar

Ismail AF, Nasri NS. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for 024 separation. Songklanakarin J Sci Technol 2002; 24: 833–842.Search in Google Scholar

Ismail AF, Yean LP. Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors. J Appl Polym Sci 2003; 88: 442–451.10.1002/app.11744Search in Google Scholar

Ismail AF, Dunkin IR, Gallivan SL, Shilton SJ. Production of super selective polysulfone hollow fiber membranes for gas separation. Polymer 1999; 40: 6499–6506.10.1016/S0032-3861(98)00862-3Search in Google Scholar

Ismail AF, Ridzuan N, Rahman SA. Latest development on the membrane formation for gas separation. Songklanakarin J Sci Technol 2002; 24: 1025–1043.Search in Google Scholar

Ismail AF, Khulbe KC, Matsuura T. Gas separation membrane materials and structures. In: Gas separation membranes. Switzerland: Springer, Cham, 2015: 37–192.10.1007/978-3-319-01095-3_3Search in Google Scholar

Ivanova S, Lewis R. Producing nitrogen via pressure swing adsorption. Chem Eng Prog 2012; 108: 38–42.Search in Google Scholar

Iwa T, Kumazawa H, Bae SY. Gas permeabilities of NH3-plasma-treated polyethersulfone membranes. J Appl Polym Sci 2004; 94: 758–762.10.1002/app.20961Search in Google Scholar

Iyer P, Iyer G, Coleman M. Gas transport properties of polyimide-POSS nanocomposites. J Membr Sci 2010; 358: 26–32.10.1016/j.memsci.2010.04.023Search in Google Scholar

Jain IP, Agarwal G. Ion beam induced surface and interface engineering. Surf Sci Rep 2011; 66: 77–172.10.1016/j.surfrep.2010.11.001Search in Google Scholar

Jami’an WNR, Hasbullah H, Mohamed F, Wan Salleh WN, Ibrahim N, Ali RR. Biodegradable gas separation membrane preparation by manipulation of casting parameters. Chem Eng Tran 2015; 43: 1105–1110.Search in Google Scholar

Jansen J, Buonomenna M, Figoli A, Drioli E. Ultra-thin asymmetric gas separation membranes of modified PEEK prepared by the dry-wet phase inversion technique. Desalination 2006; 193: 58–65.10.1016/j.desal.2005.09.024Search in Google Scholar

Jeazet H, Staudt C, Janiak C. A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem Commun (Camb) 2012; 48: 2140–2142.10.1039/c2cc16628cSearch in Google Scholar

Jiang X, Li S, Shao L. Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ Sci 2017; 10: 1339–1344.10.1039/C6EE03566CSearch in Google Scholar

Jones CW, Koros WJ. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon 1994; 32: 1419–1425.10.1016/0008-6223(94)90135-XSearch in Google Scholar

Jones C, Gordeyev S, Shilton S. Poly (vinyl chloride)(PVC) hollow fibre membranes for gas separation. Polymer 2011; 52: 901–903.10.1016/j.polymer.2011.01.013Search in Google Scholar

Kawakami M, Yamashita Y, Iwamoto M, Kagawa S. Modification of gas permeabilities of polymer membranes by plasma coating. J Membr Sci 1984; 19: 249–258.10.1016/S0376-7388(00)80228-8Search in Google Scholar

Kesting RE, Fritzsche AK, Murphy MK, Cruse CA, Handermann AC, Malon RF, Moore MD. The second-generation polysulfone gas-separation membrane. I. The use of Lewis acid:base complexes as transient templates to increase free volume. J Appl Polym Sci 1990; 40: 1557–1574.10.1002/app.1990.070400913Search in Google Scholar

Kharton V, Kovalevsky A, Viskup A, Jurado J, Figueiredo F, Naumovich E, Frade J. Transport properties and thermal expansion of Sr0.97Ti1−xFexO3−δ (x=0.2–0.8). J Solid State Chem 2001; 156: 437–444.10.1006/jssc.2000.9019Search in Google Scholar

Kharton VV, Tsipis EV, Naumovich EN, Thursfield A, Patrakeev MV, Kolotygin VA, Waerenborgh JC, Metcalfe IS. Mixed conductivity, oxygen permeability and redox behavior of K2NiF4-type La2Ni0.9Fe0.1O4+δ. J Solid State Chem 2008; 181: 1425–1433.10.1016/j.jssc.2008.03.019Search in Google Scholar

Khoiruddin K, Wenten IG. Investigation of electrochemical and morphological properties of mixed matrix polysulfone- silica anion exchange membrane. J Eng Technol Sci 2016; 48: 1–11.10.5614/j.eng.technol.sci.2016.48.1.1Search in Google Scholar

Khoiruddin K, Widiasa IN, Wenten IG. Removal of inorganic contaminants in sugar refining process using electrodeionization. J Food Eng 2014; 133: 40–45.10.1016/j.jfoodeng.2014.02.015Search in Google Scholar

Khoiruddin K, Ariono D, Subagjo, Wenten IG. Surface modification of ion-exchange membranes: methods, characteristics, and performance. J Appl Polym Sci 2017; 134: 45540.10.1002/app.45540Search in Google Scholar

Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci 2015; 43: 1–32.10.1016/j.progpolymsci.2014.10.005Search in Google Scholar

Kim S, Chen L, Johnson JK, Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 2007; 294: 147–158.10.1016/j.memsci.2007.02.028Search in Google Scholar

Kim D-H, Im H-S, Kim M-S, Lee B-S, Lee B-S, Yoon S-W, Kim B-S, Park Y-I, Cheong S-I, Rhim J-W. Study on the gas permeation behaviors of surface fluorinated polysulfone membranes. Polymer Korea 2009; 33: 537–543.Search in Google Scholar

Koenig SP, Wang L, Pellegrino J, Bunch JS. Selective molecular sieving through porous graphene. Nat Nanotechnol 2012; 7: 728–732.10.1038/nnano.2012.162Search in Google Scholar

Komatsuka T, Kusakabe A, Nagai K. Characterization and gas transport properties of poly(lactic acid) blend membranes. Desalination 2008; 234: 212–220.10.1016/j.desal.2007.09.088Search in Google Scholar

Kong C, Wang J, Yang J, Lu J, Wang A, Zhao Q. Thin carbon-zeolite composite membrane prepared on ceramic tube filter by vacuum slip casting for oxygen/nitrogen separation. Carbon 2007; 45: 2848–2850.10.1016/j.carbon.2007.08.041Search in Google Scholar

Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T. Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. J Appl Polym Sci 2015; 132: 42074.10.1002/app.42074Search in Google Scholar

Koros WJ, Fleming GK. Membrane-based gas separation. J Membr Sci 1993; 83: 1–80.10.1016/0376-7388(93)80013-NSearch in Google Scholar

Kottke T, Stalke D. Crystal handling at low temperatures. J Appl Crystallogr 1993; 26: 615–619.10.1107/S0021889893002018Search in Google Scholar

Krasowska M, Rybak A, Dudek G, Strzelewicz A, Pawełek K, Grzywna ZJ. Structure morphology problems in the air separation by polymer membranes with magnetic particles. J Membr Sci 2012; 415–416: 864–870.10.1016/j.memsci.2012.06.005Search in Google Scholar

Lamlong C, Taweepreda W. Coating of porous PVC-PEG memebrane with crosslinkable XSBR for O2/N2 and CO2/N2 separation. Polymer 2016; 96: 205–212.10.1016/j.polymer.2016.04.069Search in Google Scholar

Le Roux JD, Paul DR, Arendt M, Yuan Y, Cabasso I. Modification of asymmetric polysulfone membranes by mild surface fluorination Part II. Characterization of the fluorinated surface. J Membr Sci 1994a; 94: 143–162.10.1016/0376-7388(93)E0154-CSearch in Google Scholar

Le Roux JD, Paul DR, Kampa J, Lagow RJ. Modification of asymmetric polysulfone membranes by mild surface fluorination Part I. Transport properties. J Membr Sci 1994b; 94: 121–141.10.1016/0376-7388(93)E0153-BSearch in Google Scholar

Lee EH. Ion-beam modification of polymeric materials – fundamental principles and applications. Nucl Instrum Methods Phys Res, Sect B 1999; 151: 29–41.10.1016/S0168-583X(99)00129-9Search in Google Scholar

Lee YM, Ha SY, Lee YK, Suh DH, Hong SY. Gas separation through conductive polymer membranes. 2. Polyaniline membranes with high oxygen selectivity. Ind Eng Chem Res 1999; 38: 1917–1924.10.1021/ie980259eSearch in Google Scholar

Lee W-J, Kim D-S, Kim J-H. Preparation and gas separation properties of asymmetric polysulfone membranes by a dual bath method. Korean J Chem Eng 2000; 17: 143–148.10.1007/BF02707135Search in Google Scholar

Leo A, Smart S, Liu S, Diniz da Costa JC. High performance perovskite hollow fibres for oxygen separation. J Membr Sci 2011; 368: 64–68.10.1016/j.memsci.2010.11.002Search in Google Scholar

Li L, Qi H. Gas separation using sol-gel derived microporous zirconia membranes with high hydrothermal stability. Chin J Chem Eng 2015; 23: 1300–1306.10.1016/j.cjche.2015.05.005Search in Google Scholar

Li X-G, Kresse I, Springer J, Nissen J, Yang Y-L. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer 2001; 42: 6859–6869.10.1016/S0032-3861(01)00057-XSearch in Google Scholar

Li Y, Cao C, Chung T-S, Pramoda KP. Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 2004; 245: 53–60.10.1016/j.memsci.2004.08.002Search in Google Scholar

Li F, Li Y, Chung T-S, Kawi S. Facilitated transport by hybrid POSS®-Matrimid®-Zn2+ nanocomposite membranes for the separation of natural gas. J Membr Sci 2010; 356: 14–21.10.1016/j.memsci.2010.03.021Search in Google Scholar

Li S, Jo HJ, Han SH, Park CH, Kim S, Budd PM, Lee YM. Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. J Membr Sci 2013a; 434: 137–147.10.1016/j.memsci.2013.01.011Search in Google Scholar

Li X, Kerstiens T, Markus T. Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J Membr Sci 2013b; 438: 83–89.10.1016/j.memsci.2013.03.017Search in Google Scholar

Li S, Jiang X, Yang Q, Shao L. Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene oxide) membranes for highly-efficient CO2 separation. Chem Eng Res Des 2017; 122: 280–288.10.1016/j.cherd.2017.04.025Search in Google Scholar

Lin YS. Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 2001; 25: 39–55.10.1016/S1383-5866(01)00089-2Search in Google Scholar

Lin H, Freeman BD. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Membr Sci 2004; 239: 105–117.10.1016/j.memsci.2003.08.031Search in Google Scholar

Lin X, Xiao J, Yu Y, Chen J, Zheng G, Xu J. Gas permeabilities of poly(trimethylsilylpropyne) membranes surface modified with CF4 plasma. J Appl Polym Sci 1993; 48: 231–236.10.1002/app.1993.070480207Search in Google Scholar

Lin X, Qiu X, Zheng G, Xu J. Gas permeabilities of poly(trimethylsilylpropyne) membranes surface modified with CCI4 plasma. J Appl Polym Sci 1995; 58: 2137–2139.10.1002/app.1995.070581127Search in Google Scholar

Liu Y, Pan C, Ding M, Xu J. Gas permeability and permselectivity of photochemically crosslinked copolyimides. J Appl Polym Sci 1999; 73: 521–526.10.1002/(SICI)1097-4628(19990725)73:4<521::AID-APP8>3.0.CO;2-PSearch in Google Scholar

Liu Y, Wang R, Chung T-S. Chemical cross-linking modification of polyimide membranes for gas separation. J Membr Sci 2001; 189: 231–239.10.1016/S0376-7388(01)00415-XSearch in Google Scholar

Liu Q, Wang T, Liang C, Zhang B, Liu S, Cao Y, Qiu J. Zeolite married to carbon: a new family of membrane materials with excellent gas separation performance. Chem Mater 2006a; 18: 6283–6288.10.1021/cm061807eSearch in Google Scholar

Liu Q, Wang T, Qiu J, Cao Y. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation. Chem Commun 2006b: 1230–1232.10.1039/b516519aSearch in Google Scholar PubMed

Liu Q, Wang T, Guo H, Liang C, Liu S, Zhang Z, Cao Y, Su DS, Qiu J. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation. Microporous Mesoporous Mater 2009; 120: 460–466.10.1016/j.micromeso.2008.12.029Search in Google Scholar

Liu SL, Shao L, Chua ML, Lau CH, Wang H, Quan S. Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog Polym Sci 2013; 38: 1089–1120.10.1016/j.progpolymsci.2013.02.002Search in Google Scholar

Lockwood T. Developments in oxyfuel combustion of coal. London, UK: IEA Clean Coal Centre, Report No CCC/240, August 2014.Search in Google Scholar

Lokaj J, Brožová L, Holler P, Pientka Z. Synthesis and gas permeability of block copolymers composed of poly(styrene-co-acrylonitrile) and polystyrene blocks+. Collect Czech Chem Commun 2002; 67: 267–278.10.1135/cccc20020267Search in Google Scholar

Lumeij M, Gilleßen M, Bouwmeester H, Markus T, Barthel J, Roitsch S, Mayer J, Dronskowski R. Influence of the Ba2+/Sr2+ content and oxygen vacancies on the stability of cubic BaxSr1−xCo0.75Fe0.25O3−δ. Phys Chem Chem Phys 2014; 16: 1333–1338.10.1039/C3CP53958JSearch in Google Scholar

Luo H, Jiang H, Klande T, Cao Z, Liang F, Wang H, Caro Jr. Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0. 6Sr0.4FeO3−δ−60Ce0. 9Pr0.1O2−δ dual-phase membrane. Chem Mater 2012; 24: 2148–2154.10.1021/cm300710pSearch in Google Scholar

Madaeni SS, Moradi P. Preparation and characterization of asymmetric polysulfone membrane for separation of oxygen and nitrogen gases. J Appl Polym Sci 2011; 121: 2157–2167.10.1002/app.33804Search in Google Scholar

Madaeni SS, Enayati E, Vatanpour V. Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano-particle. Polym Adv Technol 2011; 22: 2556–2563.10.1002/pat.1800Search in Google Scholar

Magueijo VM, Anderson LG, Fletcher AJ, Shilton SJ. Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chem Eng Sci 2013; 92: 13–20.10.1016/j.ces.2013.01.043Search in Google Scholar

Meier IK, Langsam M, Klotz HC. Selectivity enhancement via photooxidative surface modification of polyimide air separation membranes. J Membr Sci 1994; 94: 195–212.10.1016/0376-7388(93)E0174-ISearch in Google Scholar

Ming X, Borgnakke DS, Campos MA, Olszewski P, Atreya A, Borgnakke C. Possibility of combustion furnace operation with oxygen-enriched gas from nitrogen generator. University of Michigan, ACEEE Summer Study on Energy Efficiency in Industry 2003.Search in Google Scholar

Mohamed F, Hasbullah H, Jamian WNR, Rani ARA, Saman MFK, Salleh WNH, Ali RR. Gas permeation performance of poly(lactic acid) asymmetric membrane for O2/N2 separation. In: Hashim AM, editor. ICGSCE 2014: Proceedings of the International Conference on Global Sustainability and Chemical Engineering. Singapore: Springer Singapore, 2015: 149–156.10.1007/978-981-287-505-1_18Search in Google Scholar

Mozaffari V, Sadeghi M, Fakhar A, Khanbabaei G, Ismail A. Gas separation properties of polyurethane/poly (ether-block-amide)(PU/PEBA) blend membranes. Sep Purif Technol 2017; 185: 202–214.10.1016/j.seppur.2017.05.028Search in Google Scholar

Mulder M. Basic principles of membrane technology, Netherlands: Kluwer Academic Publisher, 1996.10.1007/978-94-009-1766-8Search in Google Scholar

Murali RS, Sankarshana T, Sridhar S. Air separation by polymer-based membrane technology. Sep Purif Rev 2013; 42: 130–186.10.1080/15422119.2012.686000Search in Google Scholar

Nady N, Franssen MCR, Zuilhof H, Eldin MSM, Boom R, Schroën K. Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination 2011; 275: 1–9.10.1016/j.desal.2011.03.010Search in Google Scholar

Nagendra N, Bandopadhyay S. Room and elevated temperature strength of perovskite membrane tubes. J Eur Ceram Soc 2003; 23: 1361–1368.10.1016/S0955-2219(02)00367-9Search in Google Scholar

Nakata M, Kumazawa H. Gas permeability and permselectivity of plasma-treated polyethylene membranes. J Appl Polym Sci 2006; 101: 383–387.10.1002/app.23850Search in Google Scholar

Nishiyama N, Yamaguchi M, Katayama T, Hirota Y, Miyamoto M, Egashira Y, Ueyama K, Nakanishi K, Ohta T, Mizusawa A, Satoh T. Hydrogen-permeable membranes composed of zeolite nano-blocks. J Membr Sci 2007; 306: 349–354.10.1016/j.memsci.2007.09.011Search in Google Scholar

Niwa M, Kawakami H, Nagaoka S, Kanamori T, Shinbo T. Fabrication of an asymmetric polyimide hollow fiber with a defect-free surface skin layer. J Membr Sci 2000; 171: 253–261.10.1016/S0376-7388(00)00306-9Search in Google Scholar

Niwa M, Kawakami H, Kanamori T, Shinbo T, Kaito A, Nagaoka S. Gas separation of asymmetric 6FDA polyimide membrane with oriented surface skin layer. Macromolecules 2001; 34: 9039–9044.10.1021/ma0113778Search in Google Scholar

Nomura H, Kramer PW, Yasuda H. Preparation of gas separation membranes by plasma polymerization with fluoro compounds. Thin Solid Films 1984; 118: 187–195.10.1016/0040-6090(84)90071-3Search in Google Scholar

Ochs TL, Summers CA, Oryshchyn DB, Gross D, Patrick B, Gross A, Dogan C, Simmons W, Schoenfeld M. Oxy-fuel combustion systems for pollution free coal fired power generation. The 29th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, 2004.Search in Google Scholar

Ordonez MJC, Balkus KJ, Ferraris JP, Musselman IH. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 2010; 361: 28–37.10.1016/j.memsci.2010.06.017Search in Google Scholar

Pandey P, Chauhan RS. Membranes for gas separation. Prog Polym Sci 2001; 26: 853–893.10.1016/S0079-6700(01)00009-0Search in Google Scholar

Pellegrino J, Radebaugh R, Mattes BR. Gas sorption in polyaniline. 1. Emeraldine base. Macromolecules 1996; 29: 4985–4991.10.1021/ma951333xSearch in Google Scholar

Peng N, Chung TS, Li KY. The role of additives on dope rheology and membrane formation of defect-free Torlon® hollow fibers for gas separation. J Membr Sci 2009; 343: 62–72.10.1016/j.memsci.2009.07.010Search in Google Scholar

Pesek SC, Koros WJ. Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation. J Membr Sci 1993; 81: 71–88.10.1016/0376-7388(93)85032-RSearch in Google Scholar

Pinnau I, Koros WJ. Relationship between substructure resistance and gas separation properties of defect-free integrally skinned asymmetric membranes. Ind Eng Chem Res 1991a; 30: 1837–1840.10.1021/ie00056a024Search in Google Scholar

Pinnau I, Koros WJ. Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J Appl Polym Sci 1991b; 43: 1491–1502.10.1002/app.1991.070430811Search in Google Scholar

Prasad R, Notaro F, Thompson DR. Evolution of membranes in commercial air separation. J Membr Sci 1994; 94: 225–248.10.1016/0376-7388(93)E0193-NSearch in Google Scholar

Purwasasmita M, Kurnia D, Mandias FC, Khoiruddin K, Wenten IG. Beer dealcoholization using non-porous membrane distillation. Food Bioprod Process 2015a; 94: 180–186.10.1016/j.fbp.2015.03.001Search in Google Scholar

Purwasasmita M, Nabu EBP, Khoiruddin K, Wenten IG. Non dispersive chemical deacidification of crude palm oil in hollow fiber membrane contactor. J Eng Technol Sci 2015b; 47: 426–446.10.5614/j.eng.technol.sci.2015.47.4.6Search in Google Scholar

Rana D, Matsuura T. Surface modifications for antifouling membranes. Chem Rev 2010; 110: 2448–2471.10.1021/cr800208ySearch in Google Scholar

Rao P, Muller M. Industrial oxygen: its generation and use. ACEEE Summer Study on Energy Efficiency in Industry, 2007.Search in Google Scholar

Rao H-X, Liu F-N, Zhang Z-Y. Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane. J Membr Sci 2007; 303: 132–139.10.1016/j.memsci.2007.07.002Search in Google Scholar

Rautenbach R, Struck A, Melin T, Roks MFM. Impact of operating pressure on the permeance of hollow fiber gas separation membranes. J Membr Sci 1998; 146: 217–223.10.1016/S0376-7388(98)00119-7Search in Google Scholar

Readman JE, Olafsen A, Larring Y, Blom R. La0.8Sr0.2Co0.2Fe0.8O3−δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. J Mater Chem 2005; 15: 1931–1937.10.1039/b416526hSearch in Google Scholar

Reid BD, Ruiz-Trevino FA, Musselman IH, Balkus KJ, Ferraris JP. Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem Mater 2001; 13: 2366–2373.10.1021/cm000931+Search in Google Scholar

Reinhardt H-J, Obermeyer H-D, Schreiner B, Wolf S. Oxygen enrichment for intensification of air oxidation reactions. Pullach, Germany: The Linde Group, 2015.Search in Google Scholar

Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 1991; 62: 165–185.10.1016/0376-7388(91)80060-JSearch in Google Scholar

Robeson LM. Polymer membranes for gas separation. Curr Opin Solid State Mater Sci 1999; 4: 549–552.10.1016/S1359-0286(00)00014-0Search in Google Scholar

Robeson LM. The upper bound revisited. J Membr Sci 2008; 320: 390–400.10.1016/j.memsci.2008.04.030Search in Google Scholar

Rowe B, Freeman B, Paul D. Physical aging of membranes for gas separations. In: Drioli E, Barbieri G, editor. Membrane engineering for the treatment of gases volume 1: gas-separation problems with membranes. Cambridge, UK: Royal Society of Chemistry, 2011: 58–83.10.1039/9781849733472-00058Search in Google Scholar

Ruaan RC, Chen SH, Lai JY. Oxygen/nitrogen separation by polycarbonate/Co(SalPr) complex membranes. J Membr Sci 1997; 135: 9–18.10.1016/S0376-7388(97)00129-4Search in Google Scholar

Ruaan R-C, Wu T-H, Chen S-H, Lai J-Y. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma. J Membr Sci 1998; 138: 213–220.10.1016/S0376-7388(97)00237-8Search in Google Scholar

Rybak A, Kaszuwara W. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers. J Alloys Compd 2015; 648: 205–214.10.1016/j.jallcom.2015.06.197Search in Google Scholar

Rybak A, Grzywna ZJ, Kaszuwara W. On the air enrichment by polymer magnetic membranes. J Membr Sci 2009; 336: 79–85.10.1016/j.memsci.2009.03.027Search in Google Scholar

Rybak A, Grzywna ZJ, Sysel P. Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation. Sep Purif Technol 2013; 118: 424–431.10.1016/j.seppur.2013.07.026Search in Google Scholar

Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP. Gas separation properties of polyether-based polyurethane-silica nanocomposite membranes. J Membr Sci 2011; 376: 188–195.10.1016/j.memsci.2011.04.021Search in Google Scholar

Salleh W, Ismail AF. Carbon membranes for gas separation processes: recent progress and future perspective. Journal of Membrane Science and Research 2015; 1: 2–15.Search in Google Scholar

Sánchez-Soto PJ, Avilés M, del Rıo J, Ginés J, Pascual J, Pérez-Rodrıguez J. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J Anal Appl Pyrolysis 2001; 58: 155–172.10.1016/S0165-2370(00)00203-5Search in Google Scholar

Saufi SM, Ismail AF. Fabrication of carbon membranes for gas separation – a review. Carbon 2004; 42: 241–259.10.1016/j.carbon.2003.10.022Search in Google Scholar

Scheffknecht G, Al-Makhadmeh L, Schnell U, Maier J. Oxy-fuel coal combustion – a review of the current state-of-the-art. Int J Greenhouse Gas Control 2011; 5, Supplement 1: S16–S35.10.1016/j.ijggc.2011.05.020Search in Google Scholar

Schiestel T, Kilgus M, Peter S, Caspary K, Wang H, Caro J. Hollow fibre perovskite membranes for oxygen separation. J Membr Sci 2005; 258: 1–4.10.1016/j.memsci.2005.03.035Search in Google Scholar

Sedigh MG, Xu L, Tsotsis TT, Sahimi M. Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Ind Eng Chem Res 1999; 38: 3367–3380.10.1021/ie9806592Search in Google Scholar

Semsarzadeh MA, Ghalei B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J Membr Sci 2012; 401–402: 97–108.10.1016/j.memsci.2012.01.035Search in Google Scholar

Shaddix C, Molina A. Ignition, flame stability, and char combustion in oxy-fuel combustion. In: Zheng L, editor. Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Cambridge, UK: Woodhead Publishing, 2011: 101–124.10.1533/9780857090980.2.101Search in Google Scholar

Shao L, Liu L, Cheng S-X, Huang Y-D, Ma J. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. J Membr Sci 2008; 312: 174–185.10.1016/j.memsci.2007.12.060Search in Google Scholar

Sharpe ID, Ismail AF, Shilton SJ. A study of extrusion shear and forced convection residence time in the spinning of polysulfone hollow fiber membranes for gas separation. Sep Purif Technol 1999; 17: 101–109.10.1016/S1383-5866(99)00024-6Search in Google Scholar

Sianipar M, Kim SH, Khoiruddin K, Iskandar F, Wenten IG. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Advances 2017; 7: 51175–51198.10.1039/C7RA08570BSearch in Google Scholar

Skeen SA, Yablonsky G, Axelbaum RL. Characteristics of non-premixed oxygen-enhanced combustion: I. The presence of appreciable oxygen at the location of maximum temperature. Combust Flame 2009; 156: 2145–2152.10.1016/j.combustflame.2009.07.009Search in Google Scholar

Smith AR, Klosek J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol 2001; 70: 115–134.10.1016/S0378-3820(01)00131-XSearch in Google Scholar

Song Q, Nataraj S, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 2012; 5: 8359–8369.10.1039/c2ee21996dSearch in Google Scholar

Staiger CL, Pas SJ, Hill AJ, Cornelius CJ. Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chem Mater 2008; 20: 2606–2608.10.1021/cm071722tSearch in Google Scholar

Strathmann H, Kock K, Amar P, Baker RW. The formation mechanism of asymmetric membranes. Desalination 1975; 16: 179–203.10.1016/S0011-9164(00)82092-5Search in Google Scholar

Strzelewicz A, Grzywna ZJ. Studies on the air membrane separation in the presence of a magnetic field. J Membr Sci 2007; 294: 60–67.10.1016/j.memsci.2007.02.008Search in Google Scholar

Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 2008; 320: 13–41.10.1016/j.memsci.2008.03.074Search in Google Scholar

Tan Y, Croiset E, Douglas MA, Thambimuthu KV. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel 2006; 85: 507–512.10.1016/j.fuel.2005.08.010Search in Google Scholar

Tan X, Wang Z, Meng B, Meng X, Li K. Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. J Membr Sci 2010; 352: 189–196.10.1016/j.memsci.2010.02.015Search in Google Scholar

Tan X, Liu N, Meng B, Liu S. Morphology control of the perovskite hollow fibre membranes for oxygen separation using different bore fluids. J Membr Sci 2011; 378: 308–318.10.1016/j.memsci.2011.05.012Search in Google Scholar

Tanasescu S, Yáng Z, Martynczuk J, Varazashvili V, Maxim F, Teodorescu F, Botea A, Totir N, Gauckler LJ. Effects of A-site composition and oxygen nonstoichiometry on the thermodynamic stability of compounds in the Ba-Sr-Co-Fe-O system. J Solid State Chem 2013; 200: 354–362.10.1016/j.jssc.2013.01.030Search in Google Scholar

Tang X, Zhang X, Luo W, Wu C, Zhang Y, Ding W, Sun C. Iron-doping effects on the CO2 tolerance of a perovskite oxygen permeable membrane. J Mater Sci 2016; 51: 3971–3978.10.1007/s10853-015-9715-4Search in Google Scholar

Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. J Membr Sci 1999; 160: 179–186.10.1016/S0376-7388(99)00082-4Search in Google Scholar

Teramae T, Kumazawa H. Gas permeability and permselectivity of plasma-treated polypropylene membranes. J Appl Polym Sci 2007; 104: 3236–3239.10.1002/app.25951Search in Google Scholar

Teraoka Y, Zhang H-M, Furukawa S, Yamazoe N. Oxygen permeation through perovskite-type oxides. Chem Lett 1985; 14: 1743–1746.10.1246/cl.1985.1743Search in Google Scholar

Teraoka Y, Shimokawa H, Kang CY, Kusaba H, Sasaki K. Fe-based perovskite-type oxides as excellent oxygen-permeable and reduction-tolerant materials. Solid State Ionics 2006; 177: 2245–2248.10.1016/j.ssi.2006.05.037Search in Google Scholar

The Linde Group. Oxygen for the chemical industry: process intensification of air oxidations by O2 enrichment. Murray Hill: Linde North America, Inc., 2012.Search in Google Scholar

Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP. Effects of cross-linking modification on gas separation performance of Matrimid membranes. J Membr Sci 2003; 225: 77–90.10.1016/j.memsci.2003.08.005Search in Google Scholar

Torres-Trueba A, Ruiz-Treviño FA, Luna-Bárcenas G, Ortiz-Estrada CH. Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. J Membr Sci 2008; 320: 431–435.10.1016/j.memsci.2008.04.024Search in Google Scholar

Tul Muntha S, Kausar A, Siddiq M. Progress in applications of polymer-based membranes in gas separation technology. Polym Plast Technol Eng 2016; 55: 1282–1298.10.1080/03602559.2016.1163592Search in Google Scholar

U.S. Department of Energy. Oxygen-Enriched Combustion. Wahington DC: Energy Efficiency and Renewable Energy, U.S. Department of Energy, 2005.Search in Google Scholar

Van Huynh C, Kong S-C. Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam. Fuel 2013; 103: 987–996.10.1016/j.fuel.2012.09.033Search in Google Scholar

Velianti, Park SB, Heo PW. The enhancement of oxygen separation from the air and water using poly(vinylidene fluoride) membrane modified with superparamagnetic particles. J Membr Sci 2014; 466: 274–280.10.1016/j.memsci.2014.04.043Search in Google Scholar

Villaluenga JPG, Seoane B, Hradil J, Sysel P. Gas permeation characteristics of heterogeneous ODPA-BIS P polyimide membranes at different temperatures. J Membr Sci 2007; 305: 160–168.10.1016/j.memsci.2007.08.002Search in Google Scholar

Vu DQ, Koros WJ, Miller SJ. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J Membr Sci 2003; 211: 311–334.10.1016/S0376-7388(02)00429-5Search in Google Scholar

Wahab MFA, Ismail AF, Shilton SJ. Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Sep Purif Technol 2012; 86: 41–48.10.1016/j.seppur.2011.10.018Search in Google Scholar

Wang D, Li K, Teo WK. Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. J Membr Sci 1996; 115: 85–108.10.1016/0376-7388(95)00312-6Search in Google Scholar

Wang D, Li K, Teo WK. Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. J Membr Sci 1998; 138: 193–201.10.1016/S0376-7388(97)00229-9Search in Google Scholar

Wang D, Li K, Teo WK. Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J Membr Sci 2000; 176: 147–158.10.1016/S0376-7388(00)00419-1Search in Google Scholar

Wang H, Huang L, Holmberg BA, Yan Y. Nanostructured zeolite 4A molecular sieving air separation membranes. Chem Commun 2002a: 1708–1709.10.1039/b204854jSearch in Google Scholar

Wang D, Teo WK, Li K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. J Membr Sci 2002b; 204: 247–256.10.1016/S0376-7388(02)00047-9Search in Google Scholar

Wang H, Werth S, Schiestel T, Caro J. Perovskite hollow-fiber membranes for the production of oxygen-enriched air. Angew Chem Int Ed 2005; 44: 6906–6909.10.1002/anie.200501914Search in Google Scholar PubMed

Wang J, Xu Z, Xu Y. Preparation of poly(4-methyl-1-pentene) asymmetric or microporous hollow-fiber membranes by melt-spun and cold-stretch method. J Appl Polym Sci 2006a; 100: 2131–2141.10.1002/app.23597Search in Google Scholar

Wang B, Yi J, Winnubst L, Chen C. Stability and oxygen permeation behavior of Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ composite membrane under large oxygen partial pressure gradients. J Membr Sci 2006b; 286: 22–25.10.1016/j.memsci.2006.06.009Search in Google Scholar

Wang R, Meng B, Meng X, Tan X, Sunarso J, Liu L, Liu S. Highly stable La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membrane for air separation swept by steam or steam mixture. J Membr Sci 2015; 479: 232–239.10.1016/j.memsci.2015.01.006Search in Google Scholar

Wang B, Song J, Tan X, Meng B, Liu J, Liu S. Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation. J Membr Sci 2016; 502: 151–157.10.1016/j.memsci.2015.12.034Search in Google Scholar

Wardani AK, Hakim AN, Wenten IG. Combined ultrafiltration-electrodeionization technique for production of high purity water. Water Sci Technol 2017; 75: 2891–2899.10.2166/wst.2017.173Search in Google Scholar

Weibel D, Vilani C, Habert A, Achete C. Surface modification of polyurethane membranes using RF-plasma treatment with polymerizable and non-polymerizable gases. Surf Coat Technol 2006; 201: 4190–4194.10.1016/j.surfcoat.2006.08.050Search in Google Scholar

Wenten IG, Khoiruddin K. Recent developments in heterogeneous ion-exchange membrane: preparation, modification, characterization and performance evaluation. J Eng Sci Technol 2016; 11: 916–934.Search in Google Scholar

Wenten IG, Dharmawijaya P, Aryanti P, Mukti R. LTA zeolite membranes: current progress and challenges in pervaporation. RSC Adv 2017a; 7: 29520–29539.10.1039/C7RA03341ASearch in Google Scholar

Wenten IG, Khoiruddin K, Hakim A, Himma N. The bubble gas transport method. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D, editors. Membrane Characterization. Amsterdam, Netherlands: Elsevier, 2017b: 199–218.Search in Google Scholar

Wenten IG, Khoiruddin K, Himma NF. Membrane-based carbon capture technology: challenges and opportunities in Indonesia. Adv Sci Lett 2017c; 23: 5768–5771.10.1166/asl.2017.8827Search in Google Scholar

Wenten IG, Aryanti PTP, Khoiruddin K, Hakim AN, Himma NF. Advances in polysulfone-based membranes for hemodialysis. J Memb Sci Res 2016; 2: 78–89.Search in Google Scholar

Wu K-K, Chang Y-C, Chen C-H, Chen Y-D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 2010; 89: 2455–2462.10.1016/j.fuel.2010.02.002Search in Google Scholar

Wu C, Gai Y, Zhou J, Tang X, Zhang Y, Ding W, Sun C. Structural stability and oxygen permeability of BaCo1−xNbxO3−δ ceramic membranes for air separation. J Alloys Compd 2015; 638: 38–43.10.1016/j.jallcom.2015.03.056Search in Google Scholar

Xu X, Coleman MR. Preliminary investigation of gas transport mechanism in a H+ irradiated polyimide-ceramic composite membrane. Nucl Instrum Methods Phys Res, Sect B 1999; 152: 325–334.10.1016/S0168-583X(99)00067-1Search in Google Scholar

Xu D, Dong F, Chen Y, Zhao B, Liu S, Tade MO, Shao Z. Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. J Membr Sci 2014; 455: 75–82.10.1016/j.memsci.2013.12.030Search in Google Scholar

Yamasaki A, Tyagi RK, Fouda AE, Matsuura T, Jonasson K. Effect of solvent evaporation conditions on gas separation performance for asymmetric polysulfone membranes. J Appl Polym Sci 1999; 71: 1367–1374.10.1002/(SICI)1097-4628(19990228)71:9<1367::AID-APP2>3.0.CO;2-HSearch in Google Scholar

Yang N-T, Kathiraser Y, Kawi S. New asymmetric SrCo0.8Fe0.1Ga0.1O₃−δ perovskite hollow fiber membrane for stable oxygen permeability under reducing condition. J Membr Sci 2013; 428: 78–85.10.1016/j.memsci.2012.11.005Search in Google Scholar

Yang F, Zhao H, Yang J, Fang M, Lu Y, Du Z, Świerczek K, Zheng K. Structure and oxygen permeability of BaCo0.7Fe0.3−xInxO3−δ ceramic membranes. J Membr Sci 2015; 492: 559–567.10.1016/j.memsci.2015.06.012Search in Google Scholar

Yao W, Cheng H, Zhao H, Lu X, Zou X, Li S, Li C. Synthesis, oxygen permeability, and structural stability of BaCo0.7Fe0.3−xZrxO3−δ ceramic membranes. J Membr Sci 2016; 504: 251–262.10.1016/j.memsci.2016.01.005Search in Google Scholar

Ye P, Sjöberg E, Hedlund J. Air separation at cryogenic temperature using MFI membranes. Microporous Mesoporous Mater 2014; 192: 14–17.10.1016/j.micromeso.2013.09.016Search in Google Scholar

Ye P, Korelskiy D, Grahn M, Hedlund J. Cryogenic air separation at low pressure using MFI membranes. J Membr Sci 2015; 487: 135–140.10.1016/j.memsci.2015.03.063Search in Google Scholar

Yi J, Schroeder M, Martin M. CO2-tolerant and cobalt-free SrFe0.8Nb0.2O3−δ perovskite membrane for oxygen separation. Chem Mater 2013; 25: 815–817.10.1021/cm303666vSearch in Google Scholar

Yi J, Schroeder M, Weirich T, Mayer J. Behavior of Ba(Co, Fe, Nb)O3−δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design. Chem Mater 2010; 22: 6246–6253.10.1021/cm101665rSearch in Google Scholar

Yin X, Wang J, Chu N, Yang J, Lu J, Zhang Y, Yin D. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties. J Membr Sci 2010; 348: 181–189.10.1016/j.memsci.2009.10.055Search in Google Scholar

Yong WF, Li FY, Xiao YC, Chung TS, Tong YW. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J Membr Sci 2013; 443: 156–169.10.1016/j.memsci.2013.04.037Search in Google Scholar

Yu Y, Liu S, Wang Y, Zhang H, Li X, Jiang Z, Liu B. Asymmetric membranes prepared with trifluoromethylphenylated poly(ether ether ketone) for gas separation. High Perform Polym 2014; 27: 10–18.10.1177/0954008314537099Search in Google Scholar

Zeng C, Zhang L, Cheng X, Wang H, Xu N. Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes. Sep Purif Technol 2008; 63: 628–633.10.1016/j.seppur.2008.07.009Search in Google Scholar

Zhang Y, Musselman IH, Ferraris JP, Balkus KJ. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. J Membr Sci 2008; 313: 170–181.10.1016/j.memsci.2008.01.005Search in Google Scholar

Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC advances 2011; 1: 1661–1676.10.1039/c1ra00419kSearch in Google Scholar

Zhang B, Shi Y, Wu Y, Wang T, Qiu J. Preparation and characterization of supported ordered nanoporous carbon membranes for gas separation. J Appl Polym Sci 2014; 131: 39925.10.1002/app.39925Search in Google Scholar

Zhang C, Sunarso J, Liu S. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chem Soc Rev 2017; 46: 2941–3005.10.1039/C6CS00841KSearch in Google Scholar

Zhao H, Xu N, Cheng Y, Wei W, Chen N, Ding W, Lu X, Li F. Investigation of mixed conductor BaCo0.7Fe0.3−xYxO3−δ with high oxygen permeability. J Phys Chem C 2010; 114: 17975–17981.10.1021/jp106220zSearch in Google Scholar

Zhu H, Jie X, Wang L, Kang G, Liu D, Cao Y. Effect of MIL-53 on phase inversion and gas separation performance of mixed matrix hollow fiber membranes. RSC Advances 2016; 6: 69124–69134.10.1039/C6RA14823ASearch in Google Scholar

Zimmerman CM, Koros WJ. Polypyrrolones for membrane gas separations. I. Structural comparison of gas transport and sorption properties. J Polym Sci, Part B: Polym Phys 1999; 37: 1235–1249.10.1002/(SICI)1099-0488(19990615)37:12<1235::AID-POLB5>3.0.CO;2-JSearch in Google Scholar

Zornoza B, Seoane B, Zamaro JM, Téllez C, Coronas J. Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 2011; 12: 2781–2785.10.1002/cphc.201100583Search in Google Scholar

Received: 2017-09-30
Accepted: 2018-04-18
Published Online: 2018-07-03
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2017-0094/html
Scroll to top button