Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 5, 2018

Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease

  • Alexandre Vallée ORCID logo EMAIL logo , Yves Lecarpentier , Rémy Guillevin and Jean-Noël Vallée

Abstract

Neurodegenerative cells are the sites of numerous metabolic and energetic abnormalities with abnormalities in energy production. Energy is the primary determinant of neuronal viability. In neurodegenerative cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD), WNT/β-catenin pathway is upregulated. We focused this review on the hypothesis of aerobic glycolysis stimulated by the upregulation of WNT/β-catenin pathway in ALS and HD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A), and inactivation of pyruvate dehydrogenase complex (PDH). Aerobic glycolysis consists of a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production compared with oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism promotes cell death and disease progression in ALD and HD. Aerobic glycolysis regulation is an attractive mechanism for developing therapeutic interventions.

  1. Conflict of interest statement: The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

References

Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). β-Catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 16, 3797–3804.10.1093/emboj/16.13.3797Search in Google Scholar PubMed PubMed Central

Al-Harthi, L. (2012). Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J. Neuroimmune Pharmacol. 7, 725–730.10.1007/s11481-012-9412-xSearch in Google Scholar PubMed PubMed Central

Ambacher, K.K., Pitzul, K.B., Karajgikar, M., Hamilton, A., Ferguson, S.S., and Cregan, S.P. (2012). The JNK- and AKT/GSK3β-signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 7, e46885.10.1371/journal.pone.0046885Search in Google Scholar PubMed PubMed Central

Angers, S. and Moon, R.T. (2009). Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10, 468–477.10.1038/nrm2717Search in Google Scholar PubMed

Barros, L.F. (2013). Metabolic signaling by lactate in the brain. Trends Neurosci. 36, 396–404.10.1016/j.tins.2013.04.002Search in Google Scholar PubMed

Bauernfeind, A.L., Barks, S.K., Duka, T., Grossman, L.I., Hof, P.R., and Sherwood, C.C. (2014). Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct. Funct. 219, 1149–1167.10.1007/s00429-013-0662-zSearch in Google Scholar PubMed

Bélanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738.10.1016/j.cmet.2011.08.016Search in Google Scholar PubMed

Berwick, D.C. and Harvey, K. (2012). The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem. Soc. Trans. 40, 1123–1128.10.1042/BST20120122Search in Google Scholar PubMed

Blackhall, L.J. (2012). Amyotrophic lateral sclerosis and palliative care: where we are, and the road ahead. Muscle Nerve 45, 311–318.10.1002/mus.22305Search in Google Scholar PubMed

Bratic, A. and Larsson, N.-G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951–957.10.1172/JCI64125Search in Google Scholar PubMed PubMed Central

Browne, S.E., Yang, L., DiMauro, J.-P., Fuller, S.W., Licata, S.C., and Beal, M.F. (2006). Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol. Dis. 22, 599–610.10.1016/j.nbd.2006.01.001Search in Google Scholar PubMed

Canalis, E. (2013). Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat. Rev. Endocrinol. 9, 575–583.10.1038/nrendo.2013.154Search in Google Scholar PubMed

Cepeda, C., Starling, A.J., Wu, N., Nguyen, O.K., Uzgil, B., Soda, T., André., V.M., Ariano, M.A., and Levine, M.S. (2004). Increased GABAergic function in mouse models of Huntington’s disease: reversal by BDNF. J. Neurosci. Res. 78, 855–867.10.1002/jnr.20344Search in Google Scholar PubMed

Chaturvedi, R.K. and Beal, M.F. (2008). Mitochondrial approaches for neuroprotection. Ann. N.Y. Acad. Sci. 1147, 395–412.10.1196/annals.1427.027Search in Google Scholar PubMed PubMed Central

Chen, H. and Chan, D.C. (2009). Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum. Mol. Genet. 18, R169–R176.10.1093/hmg/ddp326Search in Google Scholar PubMed PubMed Central

Chen, Y., Guan, Y., Liu, H., Wu, X., Yu, L., Wang, S., Zhao, C., Du, H., and Wang, X. (2012a). Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem. Biophys. Res. Commun. 420, 397–403.10.1016/j.bbrc.2012.03.006Search in Google Scholar PubMed

Chen, Y., Guan, Y., Zhang, Z., Liu, H., Wang, S., Yu, L., Wu, X., and Wang, X. (2012b). Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol. Res. 34, 390–399.10.1179/1743132812Y.0000000027Search in Google Scholar PubMed

Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233.10.1038/nature06734Search in Google Scholar PubMed

Cimini, S., Rizzardini, M., Biella, G., and Cantoni, L. (2014). Hypoxia causes autophagic stress and derangement of metabolic adaptation in a cell model of amyotrophic lateral sclerosis. J. Neurochem. 129, 413–425.10.1111/jnc.12642Search in Google Scholar PubMed

Clevers, H. and Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell 149, 1192–1205.10.1016/j.cell.2012.05.012Search in Google Scholar PubMed

Cuitino, L., Godoy, J.A., Farías, G.G., Couve, A., Bonansco, C., Fuenzalida, M., and Inestrosa, N.C. (2010). Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J. Neurosci. Off. J. Soc. Neurosci. 30, 8411–8420.10.1523/JNEUROSCI.5736-09.2010Search in Google Scholar

Damiano, M., Galvan, L., Déglon, N., and Brouillet, E. (2010). Mitochondria in Huntington’s disease. Biochim. Biophys. Acta 1802, 52–61.10.1016/j.bbadis.2009.07.012Search in Google Scholar PubMed

Damiano, M., Diguet, E., Malgorn, C., D’Aurelio, M., Galvan, L., Petit, F., Benhaim, L., Guillermier, M., Houitte, D., Dufour, N., et al. (2013). A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum. Mol. Genet. 22, 3869–3882.10.1093/hmg/ddt242Search in Google Scholar PubMed

DiNuzzo, M., Maraviglia, B., and Giove, F. (2011). Why does the brain (not) have glycogen? BioEssays News Rev. Mol. Cell. Dev. Biol. 33, 319–326.Search in Google Scholar

Dun, Y., Li, G., Yang, Y., Xiong, Z., Feng, M., Wang, M., Zhang, Y., Xiang, J., and Ma, R. (2012). Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci. Lett. 525, 83–88.10.1016/j.neulet.2012.07.030Search in Google Scholar PubMed

Dupont, P., Besson, M.-T., Devaux, J., and Liévens, J.-C. (2012). Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. Neurobiol. Dis. 47, 237–247.10.1016/j.nbd.2012.04.007Search in Google Scholar PubMed

Dupuis, L., Pradat, P.-F., Ludolph, A.C., and Loeffler, J.-P. (2011). Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 10, 75–82.10.1016/S1474-4422(10)70224-6Search in Google Scholar PubMed

Finkbeiner, S. (2011). Huntington’s disease. Cold Spring Harb. Perspect. Biol. 3, a007476.10.1101/cshperspect.a007476Search in Google Scholar PubMed PubMed Central

Garcia-Gras, E., Lombardi, R., Giocondo, M.J., Willerson, J.T., Schneider, M.D., Khoury, D.S., Khoury, D.S., and Marian, A.J. (2006). Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116, 2012–2021.10.1172/JCI27751Search in Google Scholar PubMed PubMed Central

Gines, S., Ivanova, E., Seong, I.-S., Saura, C.A., and MacDonald, M.E. (2003). Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington’s disease knock-in striatal cells. J. Biol. Chem. 278, 50514–50522.10.1074/jbc.M309348200Search in Google Scholar PubMed

Godin, J.D., Poizat, G., Hickey, M.A., Maschat, F., and Humbert, S. (2010). Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J. 29, 2433–2445.10.1038/emboj.2010.117Search in Google Scholar PubMed PubMed Central

Harris, R.A., Tindale, L., and Cumming, R.C. (2014). Age-dependent metabolic dysregulation in cancer and Alzheimer’s disease. Biogerontology 15, 559–577.10.1007/s10522-014-9534-zSearch in Google Scholar PubMed

Harrison-Uy, S.J. and Pleasure, S.J. (2012). Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. 4, a008094.10.1101/cshperspect.a008094Search in Google Scholar PubMed

He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.10.1126/science.281.5382.1509Search in Google Scholar PubMed

Humbert, S., Bryson, E.A., Cordelières, F.P., Connors, N.C., Datta, S.R., Finkbeiner, S., Greenberg, M.E., and Saudou, F. (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837.10.1016/S1534-5807(02)00188-0Search in Google Scholar PubMed

Hur, E.-M. and Zhou, F.-Q. (2010). GSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539–551.10.1038/nrn2870Search in Google Scholar PubMed PubMed Central

Ille, F. and Sommer, L. (2005). Wnt signaling: multiple functions in neural development. Cell. Mol. Life Sci. 62, 1100–1108.10.1007/s00018-005-4552-2Search in Google Scholar PubMed

Inestrosa, N.C., Montecinos-Oliva, C., and Fuenzalida, M. (2012). Wnt signaling: role in Alzheimer disease and schizophrenia. J. Neuroimmune Pharmacol. 7, 788–807.10.1007/s11481-012-9417-5Search in Google Scholar PubMed

Johri, A. and Beal, M.F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 342, 619–630.10.1124/jpet.112.192138Search in Google Scholar PubMed PubMed Central

Joshi, P.R., Wu, N.-P., André, V.M., Cummings, D.M., Cepeda, C., Joyce, J.A., Carroll, J.B., Leavitt, B.R., Hayden, M.R., Levine, M.S., et al. (2009). Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J. Neurosci. 29, 2414–2427.10.1523/JNEUROSCI.5687-08.2009Search in Google Scholar PubMed PubMed Central

Kaur, S.J., McKeown, S.R., and Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 577, 109–118.10.1016/j.gene.2015.11.049Search in Google Scholar PubMed

Kawano, Y. and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634.10.1242/jcs.00623Search in Google Scholar PubMed

Kim, W.-Y. and Snider, W.D. (2011). Functions of GSK-3 signaling in development of the nervous system. Front. Mol. Neurosci. 4, 44.10.3389/fnmol.2011.00044Search in Google Scholar PubMed PubMed Central

Kim, J., Gao, P., Liu, Y.-C., Semenza, G.L., and Dang, C.V. (2007). Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393.10.1128/MCB.00440-07Search in Google Scholar PubMed PubMed Central

Körner, S., Hendricks, M., Kollewe, K., Zapf, A., Dengler, R., Silani, V., and Petri S. (2013). Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol. 13, 84.10.1186/1471-2377-13-84Search in Google Scholar PubMed PubMed Central

Lecarpentier, Y. and Vallée, A. (2016). Opposite interplay between PPARγ and canonical Wnt/β-catenin pathway in amyotrophic lateral sclerosis. Front. Neurol. 7, 100.Search in Google Scholar PubMed

Lecarpentier, Y., Claes, V., Duthoit, G., and Hébert, J.-L. (2014). Circadian rhythms, Wnt/β-catenin pathway and PPAR α/γ profiles in diseases with primary or secondary cardiac dysfunction. Front. Physiol. 5, 429.10.3389/fphys.2014.00429Search in Google Scholar PubMed PubMed Central

Lecarpentier, Y., Claes, V., Vallée, A., and Hébert, J.-L. (2017a). Interactions between PPARγ and the canonical Wnt/β-catenin pathway in type 2 diabetes and colon cancer. PPAR Res. 2017, 1–9.10.1155/2017/5879090Search in Google Scholar PubMed PubMed Central

Lecarpentier, Y., Claes, V., Vallée, A., and Hébert, J.-L. (2017b). Thermodynamics in cancers: opposing interactions between PPARγ and the canonical WNT/β-catenin pathway. Clin. Transl. Med. 6, 14.10.1186/s40169-017-0144-7Search in Google Scholar PubMed PubMed Central

Lee, I.-K. (2014). The role of pyruvate dehydrogenase kinase in diabetes and obesity. Diabetes Metab. J. 38, 181–186.10.4093/dmj.2014.38.3.181Search in Google Scholar PubMed PubMed Central

Lee, M.W., Kim, D.S., Kim, H.R., Kim, H.J., Yang, J.M., Ryu, S., Noh, Y.H., Lee, S.H., Son, M.H., Jung, H.L., et al. (2012). Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells. Biochem. Biophys. Res. Commun. 417, 552–557.10.1016/j.bbrc.2011.12.001Search in Google Scholar PubMed

Leone, T.C., Lehman, J.J., Finck, B.N., Schaeffer, P.J., Wende, A.R., Boudina, S., Courtois, M., Wozniak, D.F., Sambandam, N., Bernal-Mizrachi, C., et al. (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101.10.1371/journal.pbio.0030101Search in Google Scholar PubMed PubMed Central

Libro, R., Bramanti, P., and Mazzon, E. (2016). The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 158, 78–88.10.1016/j.lfs.2016.06.024Search in Google Scholar PubMed

Lin, J., Wu, P.-H., Tarr, P.T., Lindenberg, K.S., St-Pierre, J., Zhang, C.-Y., Courtois, M., Wozniak, D.F., Sambandam, N., Bernal-Mizrachi, C., et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135.10.1016/j.cell.2004.09.013Search in Google Scholar PubMed

Lopes, C., Ribeiro, M., Duarte, A.I., Humbert, S., Saudou, F., Pereira de Almeida, L., Hayden, M., and Rego, A.C. (2014). IGF-1 intranasal administration rescues Huntington’s disease phenotypes in YAC128 mice. Mol. Neurobiol. 49, 1126–1142.10.1007/s12035-013-8585-5Search in Google Scholar PubMed

Lv, L., Li, D., Zhao, D., Lin, R., Chu, Y., Zhang, H., Zha, Z., Liu, Y., Li, Z., Xu, Y., et al. (2011). Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719–730.10.1016/j.molcel.2011.04.025Search in Google Scholar PubMed PubMed Central

Marchetti, B. and Pluchino, S. (2013). Wnt your brain be inflamed? Yes, it Wnt! Trends Mol. Med. 19, 144–156.10.1016/j.molmed.2012.12.001Search in Google Scholar PubMed PubMed Central

McEwen, B.S. and Reagan, L.P. (2004). Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur. J. Pharmacol. 490, 13–24.10.1016/j.ejphar.2004.02.041Search in Google Scholar PubMed

Milakovic, T. and Johnson, G.V.W. (2005). Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 280, 30773–30782.10.1074/jbc.M504749200Search in Google Scholar PubMed

Miquel, E., Cassina, A., Martínez-Palma, L., Bolatto, C., Trías, E., Gandelman, M., Radi, R., Barbeito, L., and Cassina, P. (2012). Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One 7, e34776.10.1371/journal.pone.0034776Search in Google Scholar PubMed PubMed Central

Mochel, F. and Haller, R.G. (2011). Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 121, 493–499.10.1172/JCI45691Search in Google Scholar PubMed PubMed Central

Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler K.W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790.10.1126/science.275.5307.1787Search in Google Scholar PubMed

Naia, L., Ferreira, I.L., Cunha-Oliveira, T., Duarte, A.I., Ribeiro, M., Rosenstock, T.R., Laço, M.N., Ribeiro, M.J., Oliveira, C.R., Saudou, F., et al. (2015). Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington’s disease human lymphoblasts. Mol. Neurobiol. 51, 331–348.10.1007/s12035-014-8735-4Search in Google Scholar PubMed

Naito, A.T., Shiojima, I., and Komuro, I. (2010). Wnt signaling and aging-related heart disorders. Circ. Res. 107, 1295–1303.10.1161/CIRCRESAHA.110.223776Search in Google Scholar PubMed

Napoli, E., Wong, S., Hung, C., Ross-Inta, C., Bomdica, P., and Giulivi, C. (2013). Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. Hum. Mol. Genet. 22, 989–1004.10.1093/hmg/dds503Search in Google Scholar PubMed PubMed Central

Niida, A., Hiroko, T., Kasai, M., Furukawa, Y., Nakamura, Y., Suzuki, Y., Sugano, S., and Akiyama, T. (2004). DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 23, 8520–8526.10.1038/sj.onc.1207892Search in Google Scholar PubMed

Obel, L.F., Müller, M.S., Walls, A.B., Sickmann, H.M., Bak, L.K., Waagepetersen, H.S., and Schousboe, A. (2012). Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenerget. 4, 3.10.3389/fnene.2012.00003Search in Google Scholar PubMed PubMed Central

Oliva, C.A., Vargas, J.Y., and Inestrosa, N.C. (2013). Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front. Cell. Neurosci. 7, 224.10.3389/fncel.2013.00224Search in Google Scholar PubMed PubMed Central

Oz, G., Seaquist, E.R., Kumar, A., Criego, A.B., Benedict, L.E., Rao, J.P., Henry, P.G., Van De Moortele, P.F., and Gruetter, R. (2007). Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am. J. Physiol. Endocrinol. Metab. 292, E946–E951.10.1152/ajpendo.00424.2006Search in Google Scholar PubMed

Park, K.S., Lee, R.D., Kang, S.-K., Han, S.Y., Park, K.L., Yang, K.H., Song, Y.S., Park, H.J., Lee, Y.M., Yun, Y.P., et al. (2004). Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-γ via the JNK-dependent pathway. Exp. Cell Res. 297, 424–433.10.1016/j.yexcr.2004.03.034Search in Google Scholar PubMed

Pate, K.T., Stringari, C., Sprowl-Tanio, S., Wang, K., TeSlaa, T., Hoverter, N.P., McQuade, M.M., Garner, C., Digman, M.A., Teitell, M.A., et al. (2014). Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33, 1454–1473.10.15252/embj.201488598Search in Google Scholar PubMed PubMed Central

Patel, A.B., Lai, J.C.K., Chowdhury, G.M.I., Hyder, F., Rothman, D.L., Shulman, R.G., and Behar, K.L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc. Natl. Acad. Sci. USA 111, 5385–5390.10.1073/pnas.1403576111Search in Google Scholar PubMed PubMed Central

Reuter, S., Gupta, S.C., Chaturvedi, M.M., and Aggarwal, B.B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616.Search in Google Scholar

Riggs, J.E. (1998). Aging, increasing genomic entropy, and neurodegenerative disease. Neurol. Clin. 16, 757–770.10.1016/S0733-8619(05)70093-1Search in Google Scholar PubMed

Roche, T.E., Baker, J.C., Yan, X., Hiromasa, Y., Gong, X., Peng, T., Dong, J., Turkan, A., and Kasten, S.A. (2001). Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75.10.1016/S0079-6603(01)70013-XSearch in Google Scholar PubMed

Rosi, M.C., Luccarini, I., Grossi, C., Fiorentini, A., Spillantini, M.G., Prisco, A., Scali, C., Gianfriddo, M., Caricasole, A., Terstappen, G.C., et al. (2010). Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J. Neurochem. 112, 1539–1551.10.1111/j.1471-4159.2009.06566.xSearch in Google Scholar PubMed

Ryu, H., Rosas, H.D., Hersch, S.M., and Ferrante, R.J. (2005). The therapeutic role of creatine in Huntington’s disease. Pharmacol. Ther. 108, 193–207.10.1016/j.pharmthera.2005.04.008Search in Google Scholar PubMed

Salinas, P.C. (2012). Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb. Perspect. Biol. 4, pii: a008003. Doi: 10.1101/cshperspect.a008003.10.1101/cshperspect.a008003Search in Google Scholar PubMed PubMed Central

Sameni, S., Syed, A., Marsh, J.L., and Digman, M.A. (2016). The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington disease. Sci. Rep. 6, 34755.10.1038/srep34755Search in Google Scholar PubMed PubMed Central

Sandler, S. (2006). Chemical and Engineering Thermodynamics, 4th ed. (New York, USA: Wiley).Search in Google Scholar

Schurr, A. (2014). Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front. Neurosci. 8, 360.10.3389/fnins.2014.00360Search in Google Scholar PubMed PubMed Central

Semënov, M.V., Zhang, X., and He, X. (2008). DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 283, 21427–21432.10.1074/jbc.M800014200Search in Google Scholar PubMed PubMed Central

Semenza, G.L. (2010). HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56.10.1016/j.gde.2009.10.009Search in Google Scholar PubMed PubMed Central

Seong, I.S., Ivanova, E., Lee, J.-M., Choo, Y.S., Fossale, E., Anderson, M., Gusella, J.F., Laramie, J.M., Myers, R.H., Lesort, M., et al. (2005). HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14, 2871–2880.10.1093/hmg/ddi319Search in Google Scholar PubMed

Sharma, C., Pradeep, A., Wong, L., Rana, A., and Rana, B. (2004). Peroxisome proliferator-activated receptor gamma activation can regulate β-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J. Biol. Chem. 279, 35583–35594.10.1074/jbc.M403143200Search in Google Scholar PubMed

Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., and Ben-Ze’ev, A. (1999). The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96, 5522–5527.10.1073/pnas.96.10.5522Search in Google Scholar PubMed PubMed Central

Simpson, I.A., Carruthers, A., and Vannucci, S.J. (2007). Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 1766–1791.10.1038/sj.jcbfm.9600521Search in Google Scholar PubMed PubMed Central

Stobart, J.L. and Anderson, C.M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front. Cell. Neurosci. 7, 38.10.3389/fncel.2013.00038Search in Google Scholar PubMed PubMed Central

Sun, Q., Chen, X., Ma, J., Peng, H., Wang, F., Zha, X., Wang, Y., Jing, Y., Yang, H., Chen, R., et al. (2011). Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. USA 108, 4129–4134.10.1073/pnas.1014769108Search in Google Scholar PubMed PubMed Central

Synofzik, M., Ronchi, D., Keskin, I., Basak, A.N., Wilhelm, C., Gobbi, C., Birve, A., Biskup, S., Zecca, C., Fernández-Santiago, R., et al. (2012). Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Hum. Mol. Genet. 21, 3568–3574.10.1093/hmg/dds188Search in Google Scholar PubMed

Tefera, T.W., Tan, K.N., McDonald, T.S., and Borges, K. (2016). Alternative fuels in epilepsy and amyotrophic lateral sclerosis. Neurochem. Res. 42, 1610–1620.10.1007/s11064-016-2106-7Search in Google Scholar PubMed

Thompson, C.B. (2014). Wnt meets Warburg: another piece in the puzzle? EMBO J. 33, 1420–1422.10.15252/embj.201488785Search in Google Scholar PubMed PubMed Central

Valbuena, G.N., Rizzardini, M., Cimini, S., Siskos, A.P., Bendotti, C., Cantoni, L., and Keun, H.C. (2016). Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol. Neurobiol. 53, 2222–2240.10.1007/s12035-015-9165-7Search in Google Scholar PubMed PubMed Central

Vallée, A. and Lecarpentier, Y. (2016). Alzheimer disease: crosstalk between the canonical Wnt/β-catenin pathway and PPARs α and γ. Front. Neurosci. 10, 459.10.3389/fnins.2016.00459Search in Google Scholar PubMed PubMed Central

Vallée, A., Lecarpentier, Y., Guillevin, R., and Vallée, J.-N. (2017a). Aerobic glycolysis hypothesis through WNT/β-catenin pathway in exudative age-related macular degeneration. J. Mol. Neurosci. MN 62, 368–379.10.1007/s12031-017-0947-4Search in Google Scholar PubMed

Vallée, A., Lecarpentier, Y., Guillevin, R., and Vallée, J.-N. (2017b). Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim. Biophys. Sin. 49, 853–866.10.1093/abbs/gmx073Search in Google Scholar PubMed

Vallée, A., Lecarpentier, Y., Guillevin, R., and Vallée, J.-N. (2017c). PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci. 1, 123–130.10.1016/j.lfs.2017.09.008Search in Google Scholar PubMed

Vallée, A., Lecarpentier, Y., Guillevin, R., and Vallée, J.-N. (2017d). Thermodynamics in gliomas: interactions between the canonical WNT/β-catenin pathway and PPARγ. Front. Physiol. 8, 352.10.3389/fphys.2017.00352Search in Google Scholar PubMed PubMed Central

Vallée, A., Guillevin, R., and Vallée, J.-N. (2018). Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci. 29, 71–91.10.1515/revneuro-2017-0032Search in Google Scholar PubMed

Valvezan, A.J. and Klein, P.S. (2012). GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front. Mol. Neurosci. 5, 1.10.3389/fnmol.2012.00001Search in Google Scholar PubMed PubMed Central

Wang, X., Xiao, Y., Mou, Y., Zhao, Y., Blankesteijn, W.M., and Hall, J.L. (2002). A role for the β-catenin/T-cell factor signaling cascade in vascular remodeling. Circ. Res. 90, 340–347.10.1161/hh0302.104466Search in Google Scholar PubMed

Wang, S., Guan, Y., Chen, Y., Li, X., Zhang, C., Yu, L., Zhou, F., and Wang, X. (2013). Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol. Lett. 35, 1199–1207.10.1007/s10529-013-1199-1Search in Google Scholar PubMed

Warburg, O. (1956). On the origin of cancer cells. Science 123, 309–314.10.1126/science.123.3191.309Search in Google Scholar PubMed

Wiedau-Pazos, M., Wong, E., Solomon, E., Alarcon, M., and Geschwind, D.H. (2009). Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol. Aging 30, 14–21.10.1016/j.neurobiolaging.2007.05.015Search in Google Scholar PubMed PubMed Central

Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.-Y., Pfeiffer, H.K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S.B., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787.10.1073/pnas.0810199105Search in Google Scholar PubMed PubMed Central

Wu, D. and Pan, W. (2010). GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161–168.10.1016/j.tibs.2009.10.002Search in Google Scholar PubMed PubMed Central

Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W.K., and Lu, Z. (2012). PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696.10.1016/j.cell.2012.07.018Search in Google Scholar PubMed PubMed Central

Yang, S.-H., Li, W., Sumien, N., Forster, M., Simpkins, J.W., and Liu, R. (2015). Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: methylene blue connects the dots. Prog. Neurobiol. 157, 273–291.10.1016/j.pneurobio.2015.10.005Search in Google Scholar PubMed PubMed Central

Yin, F., Boveris, A., and Cadenas, E. (2014). Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371.10.1089/ars.2012.4774Search in Google Scholar PubMed PubMed Central

Yue, X., Lan, F., Yang, W., Yang, Y., Han, L., Zhang, A., Liu, J., Zeng, H., Jiang, T., Pu, P., et al. (2010). Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res. 1366, 27–37.10.1016/j.brainres.2010.10.032Search in Google Scholar PubMed

Zhang, S., Hulver, M.W., McMillan, R.P., Cline, M.A., and Gilbert, E.R. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. 11, 10.10.1186/1743-7075-11-10Search in Google Scholar PubMed PubMed Central

Received: 2017-08-29
Accepted: 2017-10-27
Published Online: 2018-01-05
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0075/html
Scroll to top button