Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 26, 2018

Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target?

  • Berenice Anabel Silva and Carina Cintia Ferrari EMAIL logo

Abstract

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods (‘relapsing-remitting’) that can evolve to a ‘secondary progressive’ form or persistent progression from the onset of the disease (‘primary progressive’). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.

Acknowledgments

Carina C. Ferrari is a member of the Research Career of the National Council of Scientific and Technological Research (CONICET), Argentina. Berenice A. Silva is a fellow of the Baron Foundation and received a Fiorini Foundation Award.

  1. Funding: This work was supported by the CONICET, PIP grant 11220080100106 (C.C.F.), PICT-2012-0656 (FONCyT; C.C.F.), the Baron Foundation, and the University Institute, Italian Hospital, Buenos Aires, Argentina.

References

Absinta, M., Rocca, M.A., Moiola, L., Copetti, M., Milani, N., Falini, A., Comi, G., and Filippi, M. (2011). Cortical lesions in children with multiple sclerosis. Neurology 76, 910–913.10.1212/WNL.0b013e31820f2e69Search in Google Scholar PubMed

Absinta, M., Vuolo, L., Rao, A., Nair, G., Sati, P., Cortese, I.C., Ohayon, J., Fenton, K., Reyes-Mantilla, M.I., Maric, D., et al. (2015). Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85, 18–28.10.1212/WNL.0000000000001587Search in Google Scholar PubMed PubMed Central

Absinta, M., Cortese, I.C., Vuolo, L., Nair, G., de Alwis, M.P., Ohayon, J., Meani, A., Martinelli, V., Scotti, R., Falini, A., et al. (2017). Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology 88, 1439–1444.10.1212/WNL.0000000000003820Search in Google Scholar PubMed PubMed Central

Adzemovic, M.Z., Zeitelhofer, M., Hochmeister, S., Gustafsson, S.A., and Jagodic, M. (2013). Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. Exp. Neurol. 249, 39–48.10.1016/j.expneurol.2013.08.002Search in Google Scholar PubMed

Albert, M., Antel, J., Bruck, W., and Stadelmann, C. (2007). Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138.10.1111/j.1750-3639.2006.00043.xSearch in Google Scholar PubMed PubMed Central

Aloisi, F., Serafini, B., Magliozzi, R., Howell, O.W., and Reynolds, R. (2010). Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 133, e157.10.1093/brain/awq223Search in Google Scholar PubMed

Antel, J., Antel, S., Caramanos, Z., Arnold, D.L., and Kuhlmann, T. (2012). Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol. 123, 627–638.10.1007/s00401-012-0953-0Search in Google Scholar PubMed

Ascherio, A., Munger, K.L., White, R., Kochert, K., Simon, K.C., Polman, C.H., Freedman, M.S., Hartung, H.P., Miller, D.H., Montalban, X., et al. (2014). Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 71, 306–314.10.1001/jamaneurol.2013.5993Search in Google Scholar PubMed PubMed Central

Axtell, R.C. and Steinman, L. (2009). Gaining entry to an uninflamed brain. Nat. Immunol. 10, 453–455.10.1038/ni0509-453Search in Google Scholar PubMed

Bai, C.B., Sun, S., Roholt, A., Benson, E., Edberg, D., Medicetty, S., Dutta, R., Kidd, G., Macklin, W.B., and Trapp, B. (2016). A mouse model for testing remyelinating therapies. Exp. Neurol. 283, 330–340.10.1016/j.expneurol.2016.06.033Search in Google Scholar PubMed PubMed Central

Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H., et al. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98.10.1038/nature08478Search in Google Scholar PubMed

Beck, E.S., Sati, P., Sethi, V., Kober, T., Dewey, B., Bhargava, P., Nair, G., Cortese, I.C., and Reich, D.S. (2018). Improved visualization of cortical lesions in multiple sclerosis using 7T MP2RAGE. Am. J. Neuroradiol. 39, 459–466.10.3174/ajnr.A5534Search in Google Scholar PubMed PubMed Central

Bittner, F., Murchison, C., Koop, D., Bourdette, D., and Spain, R. (2017). Lipoic acid pharmacokinetics at baseline and 1 year in secondary progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e380.10.1212/NXI.0000000000000380Search in Google Scholar PubMed PubMed Central

Bo, L., Vedeler, C.A., Nyland, H., Trapp, B.D., and Mork, S.J. (2003a). Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler. 9, 323–331.10.1191/1352458503ms917oaSearch in Google Scholar PubMed

Bo, L., Vedeler, C.A., Nyland, H.I., Trapp, B.D., and Mork, S.J. (2003b). Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732.10.1093/jnen/62.7.723Search in Google Scholar PubMed

Boontanrart, M., Hall, S.D., Spanier, J.A., Hayes, C.E., and Olson, J.K. (2016). Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J. Neuroimmunol. 292, 126–136.10.1016/j.jneuroim.2016.01.015Search in Google Scholar PubMed

Bruck, W. and Wegner, C. (2011). Insight into the mechanism of laquinimod action. J. Neurol. Sci. 306, 173–179.10.1016/j.jns.2011.02.019Search in Google Scholar PubMed

Burton, J.M., Kimball, S., Vieth, R., Bar-Or, A., Dosch, H.M., Cheung, R., Gagne, D., D’Souza, C., Ursell, M., and O’Connor, P. (2010). A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74, 1852–1859.10.1212/WNL.0b013e3181e1cec2Search in Google Scholar PubMed PubMed Central

Calabrese, M., Filippi, M., Rovaris, M., Mattisi, I., Bernardi, V., Atzori, M., Favaretto, A., Barachino, L., Rinaldi, L., Romualdi, C., et al. (2008). Morphology and evolution of cortical lesions in multiple sclerosis. A longitudinal MRI study. Neuroimage 42, 1324–1328.10.1016/j.neuroimage.2008.06.028Search in Google Scholar PubMed

Calabrese, M., Agosta, F., Rinaldi, F., Mattisi, I., Grossi, P., Favaretto, A., Atzori, M., Bernardi, V., Barachino, L., Rinaldi, L., et al. (2009a). Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150.10.1001/archneurol.2009.174Search in Google Scholar PubMed

Calabrese, M., Rocca, M.A., Atzori, M., Mattisi, I., Bernardi, V., Favaretto, A., Barachino, L., Romualdi, C., Rinaldi, L., Perini, P., et al. (2009b). Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72, 1330–1336.10.1212/WNL.0b013e3181a0fee5Search in Google Scholar PubMed

Calabrese, M., Filippi, M., and Gallo, P. (2010). Cortical lesions in multiple sclerosis. Nat. Rev. Neurol. 6, 438–444.10.1038/nrneurol.2010.93Search in Google Scholar PubMed

Calabrese, M., Poretto, V., Favaretto, A., Alessio, S., Bernardi, V., Romualdi, C., Rinaldi, F., Perini, P., and Gallo, P. (2012a). Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961.10.1093/brain/aws246Search in Google Scholar PubMed

Calabrese, M., Seppi, D., Romualdi, C., Rinaldi, F., Alessio, S., Perini, P., and Gallo, P. (2012b). Grey matter pathology in MS: a 3-year longitudinal study in a pediatric population. Am. J. Neuroradiol. 33, 1507–1511.10.3174/ajnr.A3011Search in Google Scholar PubMed PubMed Central

Calabrese, M., Favaretto, A., Martini, V., and Gallo, P. (2013). Grey matter lesions in MS: from histology to clinical implications. Prion 7, 20–27.10.4161/pri.22580Search in Google Scholar PubMed PubMed Central

Chang, A., Staugaitis, S.M., Dutta, R., Batt, C.E., Easley, K.E., Chomyk, A.M., Yong, V.W., Fox, R.J., Kidd, G.J., and Trapp, B.D. (2012). Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926.10.1002/ana.23693Search in Google Scholar PubMed PubMed Central

Chataway, J. (2016). Biotin in progressive multiple sclerosis: a new lead? Mult. Scler. 22, 1640–1641.10.1177/1352458516676387Search in Google Scholar PubMed

Chaudhary, P., Marracci, G., Galipeau, D., Pocius, E., Morris, B., and Bourdette, D. (2015). Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J. Neuroimmunol. 289, 68–74.10.1016/j.jneuroim.2015.10.011Search in Google Scholar PubMed PubMed Central

Chaudhry, B.Z., Cohen, J.A., and Conway, D.S. (2017). Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 14, 859–873.10.1007/s13311-017-0565-4Search in Google Scholar PubMed PubMed Central

Chiuso-Minicucci, F., Ishikawa, L.L., Mimura, L.A., Fraga-Silva, T.F., Franca, T.G., Zorzella-Pezavento, S.F., Marques, C., Ikoma, M.R., and Sartori, A. (2015). Treatment with vitamin D/MOG association suppresses experimental autoimmune encephalomyelitis. PLoS One 10, e0125836.10.1371/journal.pone.0125836Search in Google Scholar PubMed PubMed Central

Choi, S.R., Howell, O.W., Carassiti, D., Magliozzi, R., Gveric, D., Muraro, P.A., Nicholas, R., Roncaroli, F., and Reynolds, R. (2012). Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937.10.1093/brain/aws189Search in Google Scholar PubMed

Christy, A.L., Walker, M.E., Hessner, M.J., and Brown, M.A. (2013). Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J. Autoimmun. 42, 50–61.10.1016/j.jaut.2012.11.003Search in Google Scholar PubMed

Comi, G. (2013). Disease-modifying treatments for progressive multiple sclerosis. Mult. Scler. 19, 1428–1436.10.1177/1352458513502572Search in Google Scholar PubMed

Constantinescu, S.E. and Constantinescu, C.S. (2016). Laquinimod (ABR-215062) for the treatment of relapsing multiple sclerosis. Expert Rev. Clin. Pharmacol. 9, 49–57.10.1586/17512433.2016.1108189Search in Google Scholar PubMed

Datta, R., Sethi, V., Ly, S., Waldman, A.T., Narula, S., Dewey, B.E., Sati, P., Reich, D., and Banwell, B. (2017). 7T MRI visualization of cortical lesions in adolescents and young adults with pediatric-onset multiple sclerosis. J. Neuroimaging 27, 447–452.10.1111/jon.12465Search in Google Scholar PubMed PubMed Central

de la Fuente, A.G., Errea, O., van Wijngaarden, P., Gonzalez, G.A., Kerninon, C., Jarjour, A.A., Lewis, H.J., Jones, C.A., Nait-Oumesmar, B., Zhao, C., et al. (2015). Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J. Cell. Biol. 211, 975–985.10.1083/jcb.201505119Search in Google Scholar PubMed PubMed Central

Dorr, J., Ohlraun, S., Skarabis, H., and Paul, F. (2012). Efficacy of vitamin D supplementation in multiple sclerosis (EVIDIMS Trial): study protocol for a randomized controlled trial. Trials 13, 15.10.1186/1745-6215-13-15Search in Google Scholar PubMed PubMed Central

Dutta, R. and Trapp, B.D. (2007). Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68, S22–S31; discussion S43–S54.10.1212/01.wnl.0000275229.13012.32Search in Google Scholar PubMed

Eshaghi, A., Bodini, B., Ridgway, G.R., Garcia-Lorenzo, D., Tozer, D.J., Sahraian, M.A., Thompson, A.J., and Ciccarelli, O. (2014). Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis. Neuroimage 86, 257–264.10.1016/j.neuroimage.2013.09.059Search in Google Scholar PubMed PubMed Central

Favaretto, A., Poggiali, D., Lazzarotto, A., Rolma, G., Causin, F., and Gallo, P. (2015). The parallel analysis of phase sensitive inversion recovery (PSIR) and double inversion recovery (DIR) images significantly improves the detection of cortical lesions in multiple sclerosis (MS) since clinical onset. PLoS One 10, e0127805.10.1371/journal.pone.0127805Search in Google Scholar PubMed PubMed Central

Filippi, M., Rocca, M.A., Ciccarelli, O., De Stefano, N., Evangelou, N., Kappos, L., Rovira, A., Sastre-Garriga, J., Tintore, M., Frederiksen, J.L., et al. (2016). MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303.10.1016/S1474-4422(15)00393-2Search in Google Scholar

Fischer, M.T., Wimmer, I., Hoftberger, R., Gerlach, S., Haider, L., Zrzavy, T., Hametner, S., Mahad, D., Binder, C.J., Krumbholz, M., et al. (2013). Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136, 1799–1815.10.1093/brain/awt110Search in Google Scholar

Fisher, E., Lee, J.C., Nakamura, K., and Rudick, R.A. (2008). Grey matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 64, 255–265.10.1002/ana.21436Search in Google Scholar

Fox, R.J., Thompson, A., Baker, D., Baneke, P., Brown, D., Browne, P., Chandraratna, D., Ciccarelli, O., Coetzee, T., Comi, G., et al. (2012). Setting a research agenda for progressive multiple sclerosis: the International Collaborative on Progressive MS. Mult. Scler. 18, 1534–1540.10.1177/1352458512458169Search in Google Scholar

Gardner, C., Magliozzi, R., Durrenberger, P.F., Howell, O.W., Rundle, J., and Reynolds, R. (2013). Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136, 3596–3608.10.1093/brain/awt279Search in Google Scholar

Geisseler, O., Pflugshaupt, T., Bezzola, L., Reuter, K., Weller, D., Schuknecht, B., Brugger, P., and Linnebank, M. (2016). The relevance of cortical lesions in patients with multiple sclerosis. BMC Neurol. 16, 204.10.1186/s12883-016-0718-9Search in Google Scholar

Gentile, A., Musella, A., Bullitta, S., Fresegna, D., De Vito, F., Fantozzi, R., Piras, E., Gargano, F., Borsellino, G., Battistini, L., et al. (2016). Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J. Neuroinflamm. 13, 207.10.1186/s12974-016-0686-4Search in Google Scholar

Gentile, A., Musella, A., De Vito, F., Fresegna, D., Bullitta, S., Rizzo, F.R., Centonze, D., and Mandolesi, G. (2018). Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J. Neuroinflamm. 15, 5.10.1186/s12974-017-1048-6Search in Google Scholar

Geurts, J.J., Pouwels, P.J., Uitdehaag, B.M., Polman, C.H., Barkhof, F., and Castelijns, J.A. (2005). Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236, 254–260.10.1148/radiol.2361040450Search in Google Scholar

Geurts, J.J., Calabrese, M., Fisher, E., and Rudick, R.A. (2012). Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092.10.1016/S1474-4422(12)70230-2Search in Google Scholar

Haider, L., Zrzavy, T., Hametner, S., Hoftberger, R., Bagnato, F., Grabner, G., Trattnig, S., Pfeifenbring, S., Bruck, W., and Lassmann, H. (2016). The topography of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815.10.1093/brain/awv398Search in Google Scholar

Harrison, D.M., Roy, S., Oh, J., Izbudak, I., Pham, D., Courtney, S., Caffo, B., Jones, C.K., van Zijl, P., and Calabresi, P.A. (2015). Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol. 72, 1004–1012.10.1001/jamaneurol.2015.1241Search in Google Scholar

Howell, O.W., Reeves, C.A., Nicholas, R., Carassiti, D., Radotra, B., Gentleman, S.M., Serafini, B., Aloisi, F., Roncaroli, F., Magliozzi, R., et al. (2011). Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771.10.1093/brain/awr182Search in Google Scholar

Hutchinson, M. (2014). The best basic science paper in multiple sclerosis in 2013: disease specific molecular events in cortical multiple sclerosis lesions. Mult. Scler. 20, 1817–1818.10.1177/1352458514558342Search in Google Scholar

Hutchinson, M. (2015). Neurodegeneration in multiple sclerosis is a process separate from inflammation: no. Mult. Scler. 21, 1628–1631.10.1177/1352458515612244Search in Google Scholar

Jonkman, L.E., Fleysher, L., Steenwijk, M.D., Koeleman, J.A., de Snoo, T.P., Barkhof, F., Inglese, M., and Geurts, J.J. (2016). Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing grey matter in multiple sclerosis. Mult. Scler. 22, 1306–1314.10.1177/1352458515620499Search in Google Scholar

Kapoor, R., Furby, J., Hayton, T., Smith, K.J., Altmann, D.R., Brenner, R., Chataway, J., Hughes, R.A., and Miller, D.H. (2010). Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 9, 681–688.10.1016/S1474-4422(10)70131-9Search in Google Scholar

Kaye, J., Piryatinsky, V., Birnberg, T., Hingaly, T., Raymond, E., Kashi, R., Amit-Romach, E., Caballero, I.S., Towfic, F., Ator, M.A., et al. (2016). Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA. 113, E6145–E6152.10.1073/pnas.1607843113Search in Google Scholar PubMed PubMed Central

Kidd, D., Barkhof, F., McConnell, R., Algra, P.R., Allen, I.V., and Revesz, T. (1999). Cortical lesions in multiple sclerosis. Brain 122, 17–26.10.1093/brain/122.1.17Search in Google Scholar PubMed

Kivisakk, P., Imitola, J., Rasmussen, S., Elyaman, W., Zhu, B., Ransohoff, R.M., and Khoury, S.J. (2009). Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469.10.1002/ana.21379Search in Google Scholar PubMed PubMed Central

Klaver, R., Popescu, V., Voorn, P., Galis-de Graaf, Y., van der Valk, P., de Vries, H.E., Schenk, G.J., and Geurts, J.J. (2015). Neuronal and axonal loss in normal-appearing grey matter and subpial lesions in multiple sclerosis. J. Neuropathol. Exp. Neurol. 74, 453–458.10.1097/NEN.0000000000000189Search in Google Scholar PubMed

Kuhlmann, T., Ludwin, S., Prat, A., Antel, J., Bruck, W., and Lassmann, H. (2017). An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24.10.1007/s00401-016-1653-ySearch in Google Scholar PubMed

Kutzelnigg, A., Lucchinetti, C.F., Stadelmann, C., Bruck, W., Rauschka, H., Bergmann, M., Schmidbauer, M., Parisi, J.E., and Lassmann, H. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712.10.1093/brain/awh641Search in Google Scholar PubMed

Lagumersindez-Denis, N., Wrzos, C., Mack, M., Winkler, A., van der Meer, F., Reinert, M.C., Hollasch, H., Flach, A., Bruhl, H., Cullen, E., et al. (2017). Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathol. 134, 15–34.10.1007/s00401-017-1706-xSearch in Google Scholar PubMed PubMed Central

Lassmann, H. (2007). Multiple sclerosis: is there neurodegeneration independent from inflammation? J. Neurol. Sci. 259, 3–6.10.1016/j.jns.2006.08.016Search in Google Scholar PubMed

Lassmann, H. (2012). Cortical lesions in multiple sclerosis: inflammation versus neurodegeneration. Brain 135, 2904–2905.10.1093/brain/aws260Search in Google Scholar PubMed

Lassmann, H., van Horssen, J., and Mahad, D. (2012). Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656.10.1038/nrneurol.2012.168Search in Google Scholar PubMed

Lorscheider, J., Jokubaitis, V.G., Spelman, T., Izquierdo, G., Lugaresi, A., Havrdova, E., Horakova, D., Trojano, M., Duquette, P., Girard, M., et al. (2017). Anti-inflammatory disease-modifying treatment and short-term disability progression in SPMS. Neurology. 89, 1050–1059.10.1212/WNL.0000000000004330Search in Google Scholar PubMed PubMed Central

Losy, J. (2013). Is MS an inflammatory or primary degenerative disease? J. Neural Transm. 120, 1459–1462.10.1007/s00702-013-1079-9Search in Google Scholar PubMed PubMed Central

Louapre, C. and Lubetzki, C. (2015). Neurodegeneration in multiple sclerosis is a process separate from inflammation: yes. Mult. Scler. 21, 1626–1628.10.1177/1352458515587598Search in Google Scholar PubMed

Lublin, F.D., Reingold, S.C., Cohen, J.A., Cutter, G.R., Sorensen, P.S., Thompson, A.J., Wolinsky, J.S., Balcer, L.J., Banwell, B., Barkhof, F., et al. (2014). Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286.10.1212/WNL.0000000000000560Search in Google Scholar PubMed PubMed Central

Lucchinetti, C.F., Popescu, B.F., Bunyan, R.F., Moll, N.M., Roemer, S.F., Lassmann, H., Bruck, W., Parisi, J.E., Scheithauer, B.W., Giannini, C., et al. (2011). Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197.10.1056/NEJMoa1100648Search in Google Scholar PubMed PubMed Central

Magliozzi, R., Howell, O., Vora, A., Serafini, B., Nicholas, R., Puopolo, M., Reynolds, R., and Aloisi, F. (2007). Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104.10.1093/brain/awm038Search in Google Scholar PubMed

Magliozzi, R., Howell, O.W., Nicholas, R., Cruciani, C., Castellaro, M., Romualdi, C., Rossi, S., Pitteri, M., Benedetti, M.D., Gajofatto, A., et al. (2018). Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83, 739–755.10.1002/ana.25197Search in Google Scholar PubMed

Mahad, D.J., Trebst, C., Kivisakk, P., Staugaitis, S.M., Tucky, B., Wei, T., Lucchinetti, C.F., Lassmann, H., and Ransohoff, R.M. (2004). Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 63, 262–273.10.1093/jnen/63.3.262Search in Google Scholar PubMed

Mainero, C. and Louapre, C. (2015). Meningeal inflammation in multiple sclerosis: the key to the origin of cortical lesions? Neurology 85, 12–13.10.1212/WNL.0000000000001586Search in Google Scholar PubMed

Mainero, C., Louapre, C., Govindarajan, S.T., Gianni, C., Nielsen, A.S., Cohen-Adad, J., Sloane, J., and Kinkel, R.P. (2015). A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 138, 932–945.10.1093/brain/awv011Search in Google Scholar PubMed PubMed Central

Makshakov, G., Magonov, E., Totolyan, N., Nazarov, V., Lapin, S., Mazing, A., Verbitskaya, E., Trofimova, T., Krasnov, V., Shumilina, M., et al. (2017). Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurol. Res. Int. 2017, 8652463.10.1155/2017/8652463Search in Google Scholar PubMed PubMed Central

Mangiardi, M., Crawford, D.K., Xia, X., Du, S., Simon-Freeman, R., Voskuhl, R.R., and Tiwari-Woodruff, S.K. (2011). An animal model of cortical and callosal pathology in multiple sclerosis. Brain Pathol. 21, 263–278.10.1111/j.1750-3639.2010.00444.xSearch in Google Scholar PubMed PubMed Central

Mashayekhi, F. and Salehi, Z. (2016). Administration of vitamin D3 induces CNPase and myelin oligodendrocyte glycoprotein expression in the cerebral cortex of the murine model of cuprizone-induced demyelination. Folia Neuropathol. 54, 259–264.10.5114/fn.2016.62535Search in Google Scholar PubMed

Merkler, D., Ernsting, T., Kerschensteiner, M., Bruck, W., and Stadelmann, C. (2006). A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 129, 1972–1983.10.1093/brain/awl135Search in Google Scholar

Nelson, F., Poonawalla, A.H., Hou, P., Huang, F., Wolinsky, J.S., and Narayana, P.A. (2007). Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. AJNR Am. J. Neuroradiol. 28, 1645–1649.10.3174/ajnr.A0645Search in Google Scholar

Nelson, F., Poonawalla, A., Hou, P., Wolinsky, J.S., and Narayana, P.A. (2008). 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult. Scler. 14, 1214–1219.10.1177/1352458508094644Search in Google Scholar

Nelson, F., Datta, S., Garcia, N., Rozario, N.L., Perez, F., Cutter, G., Narayana, P.A., and Wolinsky, J.S. (2011). Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult. Scler. 17, 1122–1129.10.1177/1352458511405561Search in Google Scholar

O’Sullivan, C., Schubart, A., Mir, A.K., and Dev, K.K. (2016). The dual S1PR1/S1PR5 drug BAF312 (siponimod) attenuates demyelination in organotypic slice cultures. J. Neuroinflamm. 13, 31.10.1186/s12974-016-0494-xSearch in Google Scholar

Ontaneda, D. and Fox, R.J. (2015). Progressive multiple sclerosis. Curr. Opin. Neurol. 28, 237–243.10.1097/WCO.0000000000000195Search in Google Scholar

Ontaneda, D., Thompson, A.J., Fox, R.J., and Cohen, J.A. (2016). Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389, 1357–1366.10.1016/S0140-6736(16)31320-4Search in Google Scholar

Peterson, J.W., Bo, L., Mork, S., Chang, A., and Trapp, B.D. (2001). Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400.10.1002/ana.1123Search in Google Scholar PubMed

Popescu, B.F. and Lucchinetti, C.F. (2012a). Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 12, 11.10.1186/1471-2377-12-11Search in Google Scholar PubMed PubMed Central

Popescu, B.F. and Lucchinetti, C.F. (2012b). Pathology of demyelinating diseases. Annu. Rev. Pathol. 7, 185–217.10.1146/annurev-pathol-011811-132443Search in Google Scholar PubMed

Popescu, V., Klaver, R., Voorn, P., Galis-de Graaf, Y., Knol, D.L., Twisk, J.W., Versteeg, A., Schenk, G.J., Van der Valk, P., Barkhof, F., et al. (2015). What drives MRI-measured cortical atrophy in multiple sclerosis? Mult. Scler. 21, 1280–1290.10.1177/1352458514562440Search in Google Scholar PubMed

Popescu, V., Klaver, R., Versteeg, A., Voorn, P., Twisk, J.W., Barkhof, F., Geurts, J.J., and Vrenken, H. (2016). Postmortem validation of MRI cortical volume measurements in MS. Hum. Brain Mapp. 37, 2223–2233.10.1002/hbm.23168Search in Google Scholar PubMed PubMed Central

Ransohoff, R.M. (2006). EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis. Trends Immunol. 27, 167–168.10.1016/j.it.2006.02.007Search in Google Scholar PubMed

Ransohoff, R.M. (2009). Immunology: in the beginning. Nature 462, 41–42.10.1038/462041aSearch in Google Scholar PubMed

Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A., Lanzavecchia, A., Engelhardt, B., and Sallusto, F. (2009). C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523.10.1038/ni.1716Search in Google Scholar PubMed

Reynolds, R., Roncaroli, F., Nicholas, R., Radotra, B., Gveric, D., and Howell, O. (2011). The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 122, 155–170.10.1007/s00401-011-0840-0Search in Google Scholar PubMed

Rodriguez, E.G., Wegner, C., Kreutzfeldt, M., Neid, K., Thal, D.R., Jurgens, T., Bruck, W., Stadelmann, C., and Merkler, D. (2014). Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination. Acta Neuropathol. 128, 231–246.10.1007/s00401-014-1260-8Search in Google Scholar PubMed PubMed Central

Roosendaal, S.D., Moraal, B., Pouwels, P.J., Vrenken, H., Castelijns, J.A., Barkhof, F., and Geurts, J.J. (2009). Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult. Scler. 15, 708–714.10.1177/1352458509102907Search in Google Scholar PubMed

Runstrom, A., Leanderson, T., Ohlsson, L., and Axelsson, B. (2006). Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-β k.o. and wild type mice. J. Neuroimmunol. 173, 69–78.10.1016/j.jneuroim.2005.11.023Search in Google Scholar PubMed

Russi, A.E. and Brown, M.A. (2015). The meninges: new therapeutic targets for multiple sclerosis. Transl. Res. 165, 255–269.10.1016/j.trsl.2014.08.005Search in Google Scholar PubMed PubMed Central

Sayed, B.A., Christy, A.L., Walker, M.E., and Brown, M.A. (2010). Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J. Immunol. 184, 6891–6900.10.4049/jimmunol.1000126Search in Google Scholar PubMed

Sayed, B.A., Walker, M.E., and Brown, M.A. (2011). Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J. Immunol. 186, 3294–3298.10.4049/jimmunol.1003574Search in Google Scholar PubMed

Secor, V.H., Secor, W.E., Gutekunst, C.A., and Brown, M.A. (2000). Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822.10.1084/jem.191.5.813Search in Google Scholar PubMed PubMed Central

Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., and Aloisi, F. (2004). Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174.10.1111/j.1750-3639.2004.tb00049.xSearch in Google Scholar PubMed PubMed Central

Sethi, V., Yousry, T.A., Muhlert, N., Ron, M., Golay, X., Wheeler-Kingshott, C., Miller, D.H., and Chard, D.T. (2012). Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J. Neurol. Neurosurg. Psychiatry 83, 877–882.10.1136/jnnp-2012-303023Search in Google Scholar PubMed

Silva, B.A., Leal, M.C., Farias, M.I., Avalos, J.C., Besada, C.H., Pitossi, F.J., and Ferrari, C.C. (2018). A new focal model resembling features of cortical pathology of the progressive forms of multiple sclerosis: influence of innate immunity. Brain Behav. Immun. 69, 515–531.10.1016/j.bbi.2018.01.010Search in Google Scholar PubMed

Spain, R., Powers, K., Murchison, C., Heriza, E., Winges, K., Yadav, V., Cameron, M., Kim, E., Horak, F., Simon, J., et al. (2017). Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol. Neuroimmunol. Neuroinflamm. 4, e374.10.1212/NXI.0000000000000374Search in Google Scholar PubMed PubMed Central

Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N., Mebius, R.E., et al. (2013). Innate lymphoid cells – a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149.10.1038/nri3365Search in Google Scholar PubMed

Stassart, R.M., Helms, G., Garea-Rodriguez, E., Nessler, S., Hayardeny, L., Wegner, C., Schlumbohm, C., Fuchs, E., and Bruck, W. (2015). A New targeted model of experimental autoimmune encephalomyelitis in the common marmoset. Brain Pathol. 26, 452–464.10.1111/bpa.12292Search in Google Scholar PubMed PubMed Central

Staugaitis, S.M., Chang, A., and Trapp, B.D. (2012). Cortical pathology in multiple sclerosis: experimental approaches to studies on the mechanisms of demyelination and remyelination. Acta Neurol. Scand. 195, 97–102.10.1111/ane.12041Search in Google Scholar PubMed

Strijbis, E.M.M., Kooi, E.J., van der Valk, P., and Geurts, J.J.G. (2017). Cortical remyelination is heterogeneous in multiple sclerosis. J. Neuropathol. Exp. Neurol. 76, 390–401.10.1093/jnen/nlx023Search in Google Scholar

Thompson, A.J., Banwell, B.L., Barkhof, F., Carroll, W.M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M.S., et al. (2018a). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173.10.1016/S1474-4422(17)30470-2Search in Google Scholar

Thompson, A.J., Baranzini, S.E., Geurts, J., Hemmer, B., and Ciccarelli, O. (2018b). Multiple sclerosis. Lancet. 391, 1622–1636.10.1017/CBO9780511526947.015Search in Google Scholar

Tourbah, A., Lebrun-Frenay, C., Edan, G., Clanet, M., Papeix, C., Vukusic, S., De Seze, J., Debouverie, M., Gout, O., Clavelou, P., et al. (2016). MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study. Mult. Scler. 22, 1719–1731.10.1177/1352458516667568Search in Google Scholar PubMed PubMed Central

Ucal, M., Haindl, M.T., Adzemovic, M.Z., Strasser, J., Theisl, L., Zeitelhofer, M., Kraitsy, K., Ropele, S., Schafer, U., Fazekas, F., et al. (2017). Widespread cortical demyelination of both hemispheres can be induced by injection of pro-inflammatory cytokines via an implanted catheter in the cortex of MOG-immunized rats. Exp. Neurol. 294, 32–44.10.1016/j.expneurol.2017.04.014Search in Google Scholar PubMed

Walker, J.A., Barlow, J.L., and McKenzie, A.N. (2013). Innate lymphoid cells – how did we miss them? Nat. Rev. Immunol 13, 75–87.10.1038/nri3349Search in Google Scholar PubMed

Watzlawik, J., Warrington, A.E., and Rodriguez, M. (2010). Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev. Neurother. 10, 441–457.10.1586/ern.10.13Search in Google Scholar PubMed PubMed Central

Wegner, C., Stadelmann, C., Pfortner, R., Raymond, E., Feigelson, S., Alon, R., Timan, B., Hayardeny, L., and Bruck, W. (2010). Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 227, 133–143.10.1016/j.jneuroim.2010.07.009Search in Google Scholar PubMed

Wieseler-Frank, J., Jekich, B.M., Mahoney, J.H., Bland, S.T., Maier, S.F., and Watkins, L.R. (2007). A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus. Brain Behav. Immun. 21, 711–718.10.1016/j.bbi.2006.07.004Search in Google Scholar PubMed

Wolburg, H. and Paulus, W. (2010). Choroid plexus: biology and pathology. Acta Neuropathol. 119, 75–88.10.1007/s00401-009-0627-8Search in Google Scholar PubMed

Yang, J.S., Xu, L.Y., Xiao, B.G., Hedlund, G., and Link, H. (2004). Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-β in Lewis rats. J. Neuroimmunol. 156, 3–9.10.1016/j.jneuroim.2004.02.016Search in Google Scholar PubMed

Yates, M.A., Li, Y., Chlebeck, P., Proctor, T., Vandenbark, A.A., and Offner, H. (2010). Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 220, 136–139.10.1016/j.jneuroim.2010.01.013Search in Google Scholar PubMed PubMed Central

Yates, R.L., Esiri, M.M., Palace, J., Jacobs, B., Perera, R., and DeLuca, G.C. (2017). Fibrin(ogen) and neurodegeneration in the progressive multiple sclerosis cortex. Ann. Neurol. 82, 259–270.10.1002/ana.24997Search in Google Scholar PubMed

Zaratin, P., Comi, G., and Leppert, D. (2017). “Progressive MS – macro views”: the need for novel clinical trial paradigms to enable drug development for progressive MS. Mult. Scler. 23, 1649–1655.10.1177/1352458517729457Search in Google Scholar PubMed

Zivadinov, R., Ramasamy, D.P., Vaneckova, M., Gandhi, S., Chandra, A., Hagemeier, J., Bergsland, N., Polak, P., Benedict, R.H., Hojnacki, D., et al. (2017). Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345.10.1177/1352458516678083Search in Google Scholar PubMed

Received: 2018-02-21
Accepted: 2018-05-04
Published Online: 2018-07-26
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2018-0017/html
Scroll to top button