Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 22, 2021

Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases

  • Na Xie , Ya Hou , Shaohui Wang , Xiaopeng Ai , Jinrong Bai , Xianrong Lai , Yi Zhang , Xianli Meng EMAIL logo and Xiaobo Wang EMAIL logo

Abstract

Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400–750 nm) and NIR-I (750–900 nm) imaging, the NIR-II has a longer wavelength of 1000–1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.


Corresponding authors: Xiaobo Wang and Xianli Meng, State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China, E-mail: ,
Na Xie and Ya Hou contributed equally to this article.

Funding source: National Natural Science Foundation of China 10.13039/501100001809

Award Identifier / Grant number: 82104533

Funding source: Department of Science and Technology of Sichuan Province 10.13039/501100004829

Award Identifier / Grant number: 2021YJ0175 and 2018JY0467

Funding source: China Postdoctoral Science Foundation 10.13039/501100002858

Award Identifier / Grant number: 2020M683273

Funding source: Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine 10.13039/501100008402

Award Identifier / Grant number: CZYJC1903

Funding source: National Key R&D Program of China 10.13039/501100012166

Award Identifier / Grant number: 2017YFC1703904

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (82104533), the Science & Technology Department of Sichuan Province (2021YJ0175 and 2018JY0467), the China Postdoctoral Science Foundation (2020M683273), the Project First-Class Disciplines Develop-ment of Chengdu University of Traditional Chinese Medicine (CZYJC1903) and the National Key R&D Program of China (2017YFC1703904).

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

Ali, I.U. and Chen, X. (2015). Penetrating the blood-brain barrier: promise of novel nanoplatforms and delivery vehicles. ACS Nano 9: 9470–9474, https://doi.org/10.1021/acsnano.5b05341.Search in Google Scholar PubMed PubMed Central

Almeida, J.P., Chen, A.L., Foster, A., and Drezek, R. (2011). In vivo biodistribution of nanoparticles. Nanomedicine 6: 815–835, https://doi.org/10.2217/nnm.11.79.Search in Google Scholar PubMed

Antaris, A.L., Chen, H., Cheng, K., Sun, Y., Hong, G., Qu, C., Diao, S., Deng, Z., Hu, X., Zhang, B., et al.. (2016). A small-molecule dye for NIR-II imaging. Nat. Mater. 15: 235–242, https://doi.org/10.1038/nmat4476.Search in Google Scholar PubMed

Antaris, A.L., Chen, H., Diao, S., Ma, Z., Zhang, Z., Zhu, S., Wang, J., Lozano, A.X., Fan, Q., Chew, L., et al.. (2017). A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8: 15269, https://doi.org/10.1038/ncomms15269.Search in Google Scholar PubMed PubMed Central

Attia, A., Balasundaram, G., Moothanchery, M., Dinish, U.S., Bi, R., Ntziachristos, V., and Olivo, M. (2019). A review of clinical photoacoustic imaging, current and future trends. Photoacoustics 16: 100144, https://doi.org/10.1016/j.pacs.2019.100144.Search in Google Scholar PubMed PubMed Central

Awasthi, P., An, X., Xiang, J., Kalva, N., Shen, Y., and Li, C. (2020). Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. Nanoscale 12: 5678–5684, https://doi.org/10.1039/c9nr10918h.Search in Google Scholar PubMed

Campbell, B., De Silva, D.A., Macleod, M.R., Coutts, S.B., Schwamm, L.H., Davis, S.M., and Donnan, G.A. (2019). Ischaemic stroke. Nat. Rev. Dis. Prim. 5: 70, https://doi.org/10.1038/s41572-019-0118-8.Search in Google Scholar PubMed

Carr, J.A., Franke, D., Caram, J.R., Perkinson, C.F., Saif, M., Askoxylakis, V., Datta, M., Fukumura, D., Jain, R.K., Bawendi, M.G., et al.. (2018). Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. U. S. A 115: 4465–4470, https://doi.org/10.1073/pnas.1718917115.Search in Google Scholar PubMed PubMed Central

Chen, J., Kong, Y., Wang, W., Fang, H., Wo, Y., Zhou, D., Wu, Z., Li, Y., and Chen, S. (2016). Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem. Commun. 52: 4025–4028, https://doi.org/10.1039/c6cc00099a.Search in Google Scholar PubMed

Chen, Y., Montana, D.M., Wei, H., Cordero, J.M., Schneider, M., Le Guével, X., Chen, O., Bruns, O.T., and Bawendi, M.G. (2017). Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17: 6330–6334, https://doi.org/10.1021/acs.nanolett.7b03070.Search in Google Scholar PubMed PubMed Central

Chinnathambi, S. and Shirahata, N. (2019). Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20: 337–355, https://doi.org/10.1080/14686996.2019.1590731.Search in Google Scholar PubMed PubMed Central

Choi, H.S., Ipe, B.I., Misra, P., Lee, J.H., Bawendi, M.G., and Frangioni, J.V. (2009). Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9: 2354–2359, https://doi.org/10.1021/nl900872r.Search in Google Scholar PubMed PubMed Central

Deng, Z., Li, X., Xue, Z., Jiang, M., Li, Y., Zeng, S., and Liu, H. (2018). A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm. Nanoscale 10: 9393–9400, https://doi.org/10.1039/c8nr00305j.Search in Google Scholar PubMed

Deng, G., Peng, X., Sun, Z., Zheng, W., Yu, J., Du, L., Chen, H., Gong, P., Zhang, P., Cai, L., et al.. (2020). Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 14: 11452–11462, https://doi.org/10.1021/acsnano.0c03824.Search in Google Scholar PubMed

Diao, S., Hong, G., Antaris, A.L., Blackburn, J.L., Cheng, K., Cheng, Z., and Dai, H.J. (2015). Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8: 3027–3034, https://doi.org/10.1007/s12274-015-0808-9.Search in Google Scholar

Ding, F., Chen, S., Zhang, W., Tu, Y., and Sun, Y. (2017). UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg. Med. Chem. 25: 5179–5184, https://doi.org/10.1016/j.bmc.2017.08.034.Search in Google Scholar PubMed

Ding, F., Li, C., Xu, Y., Li, J., Li, H., Yang, G., and Sun, Y. (2018). PEGylation regulates self-assembled small-molecule dye-based probes from single molecule to nanoparticle size for multifunctional NIR-II bioimaging. Adv. Healthc. Mater. 7: e1800973, https://doi.org/10.1002/adhm.201800973.Search in Google Scholar PubMed

Ding, F., Fan, Y., Sun, Y., and Zhang, F. (2019). Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging. Adv. Healthc. Mater. 8: e1900260, https://doi.org/10.1002/adhm.201900260.Search in Google Scholar PubMed

Donat, H., França, M., Candelária, I., and Caseiro-Alves, F. (2017). Liver MRI: from basic protocol to advanced techniques. Eur. J. Radiol. 93: 30–39, https://doi.org/10.1016/j.ejrad.2017.05.028.Search in Google Scholar PubMed

Dong, X. (2018). Current strategies for brain drug delivery. Theranostics 8: 1481–1493, https://doi.org/10.7150/thno.21254.Search in Google Scholar PubMed PubMed Central

Egloff-Juras, C., Bezdetnaya, L., Dolivet, G., and Lassalle, H.P. (2019). NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int. J. Nanomed. 14: 7823–7838, https://doi.org/10.2147/ijn.s207486.Search in Google Scholar PubMed PubMed Central

Esenwa, C. and Gutierrez, J. (2015). Secondary stroke prevention: challenges and solutions. Vasc. Health Risk Manag. 11: 437–450, https://doi.org/10.2147/VHRM.S63791.Search in Google Scholar PubMed PubMed Central

Fang, J., Nakamura, H., and Maeda, H. (2011). The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63: 136–151, https://doi.org/10.1016/j.addr.2010.04.009.Search in Google Scholar PubMed

Feng, Z., Yu, X., Jiang, M., Zhu, L., Zhang, Y., Yang, W., Xi, W., Li, G., and Qian, J. (2019). Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 9: 5706–5719, https://doi.org/10.7150/thno.31332.Search in Google Scholar PubMed PubMed Central

Ferguson, S.D. (2011). Malignant gliomas: diagnosis and treatment. Dis. Mon. 57: 558–569, https://doi.org/10.1016/j.disamonth.2011.08.020.Search in Google Scholar PubMed

Fu, Q., Zhu, R., Song, J., Yang, H., and Chen, X. (2019). Photoacoustic imaging: contrast agents and their biomedical applications. Adv. Mater. 31: e1805875, https://doi.org/10.1002/adma.201805875.Search in Google Scholar PubMed

Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., and Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22: 969–976, https://doi.org/10.1038/nbt994.Search in Google Scholar PubMed

Golovynskyi, S., Golovynska, I., Stepanova, L.I., Datsenko, O.I., Liu, L., Qu, J., and Ohulchanskyy, T.Y. (2018). Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications. J. Biophot. 11: e201800141, https://doi.org/10.1002/jbio.201800141.Search in Google Scholar PubMed

Gu, Y.P., Cui, R., Zhang, Z.L., Xie, Z.X., and Pang, D.W. (2012). Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 134: 79–82, https://doi.org/10.1021/ja2089553.Search in Google Scholar PubMed

Guo, B., Sheng, Z.H., Kenry, Hu, D.H., Lin, X.W., Xu, S.D., Liu, C.B., Zheng, H.R., and Liu, B. (2017). Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumor in second near-infrared window. Mater. Horiz. 4: 1151–1156, https://doi.org/10.1039/c7mh00672a.Search in Google Scholar

Guo, B., Sheng, Z., Hu, D., Liu, C., Zheng, H., and Liu, B. (2018). Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 30: e1802591, https://doi.org/10.1002/adma.201802591.Search in Google Scholar PubMed

Guo, B., Chen, J., Chen, N., Middha, E., Xu, S., Pan, Y., Wu, M., Li, K., Liu, C., and Liu, B. (2019a). High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater. 31: e1808355, https://doi.org/10.1002/adma.201808355.Search in Google Scholar PubMed

Guo, B., Feng, Z., Hu, D., Xu, S., Middha, E., Pan, Y., Liu, C., Zheng, H., Qian, J., Sheng, Z., et al.. (2019b). Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv. Mater. 31: e1902504, https://doi.org/10.1002/adma.201902504.Search in Google Scholar PubMed

Han, X., Xu, K., Taratula, O., and Farsad, K. (2019). Applications of nanoparticles in biomedical imaging. Nanoscale 11: 799–819, https://doi.org/10.1039/c8nr07769j.Search in Google Scholar PubMed PubMed Central

He, Y., Zhong, Y., Su, Y., Lu, Y., Jiang, Z., Peng, F., Xu, T., Su, S., Huang, Q., Fan, C., et al.. (2011). Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. Angew. Chem. Int. Ed. Engl. 50: 5695–5698, https://doi.org/10.1002/anie.201004398.Search in Google Scholar PubMed

He, S., Song, J., Qu, J., and Cheng, Z. (2018). Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47: 4258–4278, https://doi.org/10.1039/c8cs00234g.Search in Google Scholar PubMed

Hong, G., Lee, J.C., Robinson, J.T., Raaz, U., Xie, L., Huang, N.F., Cooke, J.P., and Dai, H. (2012a). Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18: 1841–1846, https://doi.org/10.1038/nm.2995.Search in Google Scholar PubMed PubMed Central

Hong, G., Robinson, J.T., Zhang, Y., Diao, S., Antaris, A.L., Wang, Q., and Dai, H. (2012b). In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. Engl. 51: 9818–9821, https://doi.org/10.1002/anie.201206059.Search in Google Scholar PubMed

Hong, G., Diao, S., Chang, J., Antaris, A.L., Chen, C., Zhang, B., Zhao, S., Atochin, D.N., Huang, P.L., Andreasson, K.I., et al.. (2014a). Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8: 723–730, https://doi.org/10.1038/nphoton.2014.166.Search in Google Scholar PubMed PubMed Central

Hong, G., Zou, Y., Antaris, A.L., Diao, S., Wu, D., Cheng, K., Zhang, X., Chen, C., Liu, B., He, Y., et al.. (2014b). Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5: 4206, https://doi.org/10.1038/ncomms5206.Search in Google Scholar PubMed

Hong, G., Antaris, A.L., and Dai, H. (2017). Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1: 0010, https://doi.org/10.1038/s41551-016-0010.Search in Google Scholar

Hu, Z., Fang, C., Li, B., Zhang, Z., Cao, C., Cai, M., Su, S., Sun, X., Shi, X., Li, C., et al.. (2020). First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4: 259–271, https://doi.org/10.1038/s41551-019-0494-0.Search in Google Scholar PubMed

Huang, J. and Pu, K. (2020a). Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. 59: 11717–11731, https://doi.org/10.1002/anie.202001783.Search in Google Scholar PubMed

Huang, L.Y., Zhu, S., Cui, R., and Zhang, M. (2020b). Noninvasive in vivo imaging in the second near-infrared window by inorganic nanoparticle-based fluorescent probes. Anal. Chem. 92: 535–542, https://doi.org/10.1021/acs.analchem.9b04156.Search in Google Scholar PubMed

Jiang, Y., Upputuri, P.K., Xie, C., Lyu, Y., Zhang, L., Xiong, Q., Pramanik, M., and Pu, K. (2017). Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 17: 4964–4969, https://doi.org/10.1021/acs.nanolett.7b02106.Search in Google Scholar PubMed

Jiang, Y., Li, J., Zhen, X., Xie, C., and Pu, K. (2018). Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv. Mater. 30: e1705980, https://doi.org/10.1002/adma.201705980.Search in Google Scholar PubMed

Jiang, Y., Upputuri, P.K., Xie, C., Zeng, Z., Sharma, A., Zhen, X., Li, J., Huang, J., Pramanik, M., and Pu, K. (2019). Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31: e1808166, https://doi.org/10.1002/adma.201808166.Search in Google Scholar PubMed

Kane, J.R. (2019). The role of brain vasculature in glioblastoma. Mol. Neurobiol. 56: 6645–6653, https://doi.org/10.1007/s12035-019-1561-y.Search in Google Scholar PubMed

Kenry, Duan, Y., and Liu, B. (2018). Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 30: e1802394, https://doi.org/10.1002/adma.201802394.Search in Google Scholar PubMed

Kurbegovic, S., Juhl, K., Chen, H., Qu, C., Ding, B., Leth, J.M., Drzewiecki, K.T., Kjaer, A., and Cheng, Z. (2018). Molecular targeted NIR-II probe for image-guided brain tumor surgery. Bioconjugate Chem. 29: 3833–3840, https://doi.org/10.1021/acs.bioconjchem.8b00669.Search in Google Scholar PubMed PubMed Central

Li, J. and Pu, K. (2019). Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48: 38–71, https://doi.org/10.1039/c8cs00001h.Search in Google Scholar PubMed

Li, C., Cao, L., Zhang, Y., Yi, P., Wang, M., Tan, B., Deng, Z., Wu, D., and Wang, Q. (2015). Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe. Small 11: 4517–4525, https://doi.org/10.1002/smll.201500997.Search in Google Scholar PubMed

Li, B., Lu, L., Zhao, M., Lei, Z., and Zhang, F. (2018). An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem. 57: 7483–7487, https://doi.org/10.1002/anie.201801226.Search in Google Scholar PubMed

Li, X., Jiang, M., Li, Y., Xue, Z., Zeng, S., and Liu, H. (2019a). 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 100: 260–268, https://doi.org/10.1016/j.msec.2019.02.106.Search in Google Scholar PubMed

Li, X., Jiang, M., Zeng, S., and Liu, H. (2019b). Polydopamine coated multifunctional lanthanide theranostic agent for vascular malformation and tumor vessel imaging beyond 1500 nm and imaging-guided photothermal therapy. Theranostics 9: 3866–3878, https://doi.org/10.7150/thno.31864.Search in Google Scholar PubMed PubMed Central

Li, Y., Zeng, S., and Hao, J. (2019c). Non-Invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm. ACS Nano 13: 248–259, https://doi.org/10.1021/acsnano.8b05431.Search in Google Scholar PubMed

Li, B., Zhao, M., Feng, L., Dou, C., Ding, S., Zhou, G., Lu, L., Zhang, H., Chen, F., Li, X., et al.. (2020a). Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 11: 3102, https://doi.org/10.1038/s41467-020-16924-z.Search in Google Scholar PubMed PubMed Central

Li, C., Chen, G., Zhang, Y., Wu, F., and Wang, Q. (2020b). Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 142: 14789–14804, https://doi.org/10.1021/jacs.0c07022.Search in Google Scholar PubMed

Li, C., Li, W., Liu, H., Zhang, Y., Chen, G., Li, Z., and Wang, Q. (2020c). An activatable NIR-II nanoprobe for In Vivo early real-time diagnosis of traumatic brain injury. Angew. Chem. 59: 247–252, https://doi.org/10.1002/anie.201911803.Search in Google Scholar PubMed

Li, Q., Ding, Q., Li, Y., Zeng, X., Liu, Y., Lu, S., Zhou, H., Wang, X., Wu, J., Meng, X., et al.. (2020d). Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem. Commun. 56: 3289–3292, https://doi.org/10.1039/c9cc09865h.Search in Google Scholar PubMed

Li, S., Cheng, T., Yin, C., Zhou, S., Fan, Q., Wu, W., and Jiang, X. (2020e). Phenothiazine versus phenoxazine: structural effects on the photophysical properties of NIR-II AIE fluorophores. ACS Appl. Mater. Interfaces 12: 43466–43473, https://doi.org/10.1021/acsami.0c12773.Search in Google Scholar PubMed

Li, Y., Liu, Y.F., Li, Q.Q., Zeng, X.D., Tian, T., Zhou, W.Y., Cui, Y., Wang, X.K., Cheng, X.D., Ding, Q.H., et al.. (2020f). Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11: 2621–2626, https://doi.org/10.1039/c9sc06567a.Search in Google Scholar

Li, S., Deng, Q., Zhang, Y., Li, X., Wen, G., Cui, X., Wan, Y., Huang, Y., Chen, J., Liu, Z., et al.. (2020g). Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv. Mater. 32: e2001146, https://doi.org/10.1002/adma.202001146.Search in Google Scholar PubMed

Lifante, J., Del Rosal, B., Chaves-Coira, I., Fernández, N., Jaque, D., and Ximendes, E. (2020). The near-infrared autofluorescence fingerprint of the brain. J. Biophot. 13: e202000154, https://doi.org/10.1002/jbio.202000154.Search in Google Scholar PubMed

Lin, J., Zeng, X., Xiao, Y., Tang, L., Nong, J., Liu, Y., Zhou, H., Ding, B., Xu, F., Tong, H., et al.. (2018). Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem. Sci. 10: 1219–1226, https://doi.org/10.1039/c8sc04363a.Search in Google Scholar PubMed PubMed Central

Liu, H.Y., Wu, P.J., Kuo, S.Y., Chen, C.P., Chang, E.H., Wu, C.Y., and Chan, Y.H. (2015). Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J. Am. Chem. Soc. 137: 10420–10429, https://doi.org/10.1021/jacs.5b06710.Search in Google Scholar PubMed

Liu, H., Hong, G., Luo, Z., Chen, J., Chang, J., Gong, M., He, H., Yang, J., Yuan, X., Li, L., et al.. (2019a). Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31: e1901015, https://doi.org/10.1002/adma.201901015.Search in Google Scholar PubMed

Liu, H., Wang, X., Huang, Y., Li, H., Peng, C., Yang, H., Li, J., Hong, H., Lei, Z., Zhang, X., et al.. (2019b). Biocompatible croconaine aggregates with strong 1.2-1.3 μm absorption for NIR-IIa photoacoustic imaging in vivo. ACS Appl. Mater. Interfaces 11: 30511–30517, https://doi.org/10.1021/acsami.9b06824.Search in Google Scholar PubMed

Liu, S., Chen, C., Li, Y.Y., Zhang, H.K., Liu, J.K., Wang, R., Wong, T.H., Jacky, W., Ding, D., and Tang, B.Z. (2019c). Constitutional isomerization enables bright NIR‐II AIEgen for brain‐inflammation imaging. Adv. Funct. Mater. 30: 1908125, https://doi.org/10.1002/adfm.201908125.Search in Google Scholar

Liu, S., Zhou, X., Zhang, H., Ou, H., Lam, J., Liu, Y., Shi, L., Ding, D., and Tang, B.Z. (2019d). Molecular motion in aggregates: manipulating TICT for boosting photothermal theranostics. J. Am. Chem. Soc. 141: 5359–5368, https://doi.org/10.1021/jacs.8b13889.Search in Google Scholar PubMed

Liu, Y., Liu, H., Yan, H., Liu, Y., Zhang, J., Shan, W., Lai, P., Li, H., Ren, L., Li, Z., et al.. (2019e). Aggregation-induced absorption enhancement for deep near-infrared II photoacoustic imaging of brain gliomas in vivo. Adv. Sci. 6: 1801615, https://doi.org/10.1002/advs.201801615.Search in Google Scholar PubMed PubMed Central

Liu, Z., Ren, F., Zhang, H., Yuan, Q., Jiang, Z., Liu, H., Sun, Q., and Li, Z. (2019f). Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials 219: 119364, https://doi.org/10.1016/j.biomaterials.2019.119364.Search in Google Scholar PubMed

Liu, Y., Liu, J., Chen, D., Wang, X., Zhang, Z., Yang, Y., Jiang, L., Qi, W., Ye, Z., He, S., et al.. (2020). Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging. Angew. Chem. 59: 21049–21057, https://doi.org/10.1002/anie.202007886.Search in Google Scholar PubMed

Liu, Y., Yuzhen, Y., Tian, T., Wang, W., Nong, J., Qiao, X., Xu, F., Gao, J., and Hong, X. (2021). Novel CD-MOF NIR-II recent advances in design of lanthanide fluorophores for gastric ulcer imaging. Chin. Chem. Lett., https://doi.org/10.1016/j.cclet.2021.03.075.Search in Google Scholar

Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., and Kleihues, P. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114: 97–109, https://doi.org/10.1007/s00401-007-0243-4.Search in Google Scholar PubMed PubMed Central

Lowery, F.J. and Yu, D. (2017). Brain metastasis: unique challenges and open opportunities. Biochim. Biophys. Acta Rev. Canc. 1867: 49–57, https://doi.org/10.1016/j.bbcan.2016.12.001.Search in Google Scholar PubMed PubMed Central

Lv, R., Wang, Y., Lin, B., Peng, X., Liu, J., Lü, W.D., and Tian, J. (2021). Targeted luminescent probes for precise upconversion/NIR II luminescence diagnosis of lung adenocarcinoma. Anal. Chem. 93: 4984–4992, https://doi.org/10.1021/acs.analchem.1c00374.Search in Google Scholar PubMed

Mandal, A. and Viswanathan, C. (2015). Natural killer cells: in health and disease. Hematol. Oncol. Stem Cell Ther. 8: 47–55, https://doi.org/10.1016/j.hemonc.2014.11.006.Search in Google Scholar PubMed

Martínez Rivas, C.J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Román, R.Á., Fessi, H., and Elaissari, A. (2017). Nanoprecipitation process: from encapsulation to drug delivery. Int. J. Pharm. 532: 66–81, https://doi.org/10.1016/j.ijpharm.2017.08.064.Search in Google Scholar PubMed

Mei, J., Huang, Y., and Tian, H. (2018). Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl. Mater. Interfaces 10: 12217–12261, https://doi.org/10.1021/acsami.7b14343.Search in Google Scholar PubMed

Miao, Q. and Pu, K. (2018). Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30: e1801778, https://doi.org/10.1002/adma.201801778.Search in Google Scholar PubMed

Miao, Y., Gu, C., Zhu, Y., Yu, B., Shen, Y., and Cong, H. (2018). Recent progress in fluorescence imaging of the near-infrared II window. Chembiochem 19: 2522–2541, https://doi.org/10.1002/cbic.201800466.Search in Google Scholar PubMed

Monson, K.L., Converse, M.I., and Manley, G.T. (2019). Cerebral blood vessel damage in traumatic brain injury. Clin. Biomech. 64: 98–113, https://doi.org/10.1016/j.clinbiomech.2018.02.011.Search in Google Scholar PubMed

Müller, J., Wunder, A., and Licha, K. (2013). Optical imaging. Recent Results Canc. Res. 187: 221–246, https://doi.org/10.1007/978-3-642-10853-2_7.Search in Google Scholar PubMed

Naczynski, D.J., Tan, M.C., Zevon, M., Wall, B., Kohl, J., Kulesa, A., Chen, S., Roth, C.M., Riman, R.E., and Moghe, P.V. (2013). Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 4: 2199, https://doi.org/10.1038/ncomms3199.Search in Google Scholar PubMed PubMed Central

Ntziachristos, V. (2006). Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8: 1–33, https://doi.org/10.1146/annurev.bioeng.8.061505.095831.Search in Google Scholar PubMed

Qi, J., Sun, C., Zebibula, A., Zhang, H., Kwok, R., Zhao, X., Xi, W., Lam, J., Qian, J., and Tang, B.Z. (2018). Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 30: e1706856, https://doi.org/10.1002/adma.201706856.Search in Google Scholar PubMed

Qi, J., Alifu, N., Zebibula, A., Wei, P., Lam, J., Peng, H.Q., Kwok, K., Qian, J., and Tang, B.Z. (2020). Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today 34: 100893, https://doi.org/10.1016/j.nantod.2020.100893.Search in Google Scholar

Qiu, T., Lan, Y., Gao, W., Zhou, M., Liu, S., Huang, W., Zeng, S., Pathak, J.L., Yang, B., and Zhang, J. (2021). Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant. Imag. Med. Surg. 11: 2169–2186, https://doi.org/10.21037/qims-20-845.Search in Google Scholar PubMed PubMed Central

Raghavan, V., O’Flatharta, C., Dwyer, R., Breathnach, A., Zafar, H., Dockery, P., Wheatley, A., Keogh, I., Leahy, M., and Olivo, M. (2017). Dual plasmonic gold nanostars for photoacoustic imaging and photothermal therapy. Nanomedicine 12: 457–471, https://doi.org/10.2217/nnm-2016-0318.Search in Google Scholar PubMed

Ravindran, S., Suthar, J.K., Rokade, R., Deshpande, P., Singh, P., Pratinidhi, A., Khambadkhar, R., and Utekar, S. (2018). Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr. Drug Metabol. 19: 327–334, https://doi.org/10.2174/1389200219666180305154119.Search in Google Scholar

Ren, F., Liu, H.H., Zhang, H., Jiang, Z.L., Xia, B., Genevois, C., He, T., Allix, M., Sun, Q., Li, Z., et al.. (2020). Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today 34: 100905, https://doi.org/10.1016/j.nantod.2020.100905.Search in Google Scholar

Russo, M.V. and McGavern, D.B. (2016). Inflammatory neuroprotection following traumatic brain injury. Science 353: 783–785, https://doi.org/10.1126/science.aaf6260.Search in Google Scholar

Saeedi, M., Eslamifar, M., Khezri, K., and Dizaj, S.M. (2019). Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother. 111: 666–675, https://doi.org/10.1016/j.biopha.2018.12.133.Search in Google Scholar

Saji, H. (2017). In vivo molecular imaging. Biol. Pharm. Bull. 40: 1605–1615, https://doi.org/10.1248/bpb.b17-00505.Search in Google Scholar

Sen, M., Demiral, A.S., Cetingöz, R., Alanyali, H., Akman, F., Sentürk, D., and Kinay, M. (1998). Prognostic factors in lung cancer with brain metastasis. Radiother. Oncol. 46: 33–38, https://doi.org/10.1016/s0167-8140(97)00124-2.Search in Google Scholar

Shaffer, T.M., Drain, C.M., and Grimm, J. (2016). Optical imaging of ionizing radiation from clinical sources. J. Nucl. Med. 57: 1661–1666, https://doi.org/10.2967/jnumed.116.178624.Search in Google Scholar PubMed PubMed Central

Sheng, Z., Guo, B., Hu, D., Xu, S., Wu, W., Liew, W.H., Yao, K., Jiang, J., Liu, C., Zheng, H., et al.. (2018). Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 30: 1870214, https://doi.org/10.1002/adma.201870214.Search in Google Scholar

Shiraki, T., Miyauchi, Y., Matsuda, K., and Nakashima, N. (2020). Carbon nanotube photoluminescence modulation by local chemical and supramolecular chemical functionalization. Accounts Chem. Res. 53: 1846–1859, https://doi.org/10.1021/acs.accounts.0c00294.Search in Google Scholar PubMed

Steinberg, I., Huland, D.M., Vermesh, O., Frostig, H.E., Tummers, W.S., and Gambhir, S.S. (2019). Photoacoustic clinical imaging. Photoacoustics 14: 77–98, https://doi.org/10.1016/j.pacs.2019.05.001.Search in Google Scholar PubMed PubMed Central

Sun, Y., Ding, M., Zeng, X., Xiao, Y., Wu, H., Zhou, H., Ding, B., Qu, C., Hou, W., Er-Bu, A., et al.. (2017). Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem. Sci. 8: 3489–3493, https://doi.org/10.1039/c7sc00251c.Search in Google Scholar

Sun, Y., Zeng, X., Xiao, Y., Liu, C., Zhu, H., Zhou, H., Chen, Z., Xu, F., Wang, J., Zhu, M., et al.. (2018). Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery. Chem. Sci. 9: 2092–2097, https://doi.org/10.1039/c7sc04774f.Search in Google Scholar

Sun, C., Li, B., Zhao, M., Wang, S., Lei, Z., Lu, L., Zhang, H., Feng, L., Dou, C., Yin, D., et al.. (2019a). J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J. Am. Chem. Soc. 141: 19221–19225, https://doi.org/10.1021/jacs.9b10043.Search in Google Scholar

Sun, T., Han, J., Liu, S., Wang, X., Wang, Z.Y., and Xie, Z. (2019b). Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 13: 7345–7354, https://doi.org/10.1021/acsnano.9b03910.Search in Google Scholar

Sweeney, M.D., Kisler, K., Montagne, A., Toga, A.W., and Zlokovic, B.V. (2018). The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21: 1318–1331, https://doi.org/10.1038/s41593-018-0234-x.Search in Google Scholar

Takeuchi, T., Iizumi, Y., Yudasaka, M., Kizaka-Kondoh, S., and Okazaki, T. (2019). Characterization and biodistribution analysis of oxygen-doped single-walled carbon nanotubes used as in vivo fluorescence imaging probes. Bioconjugate Chem. 30: 1323–1330, https://doi.org/10.1021/acs.bioconjchem.9b00088.Search in Google Scholar

Tang, H., Yang, S.T., Yang, Y.F., Ke, D.M., Liu, J.H., Chen, X., Wang, H., and Liu, Y. (2016). Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl. Mater. Interfaces 8: 17859–17869, https://doi.org/10.1021/acsami.6b05057.Search in Google Scholar

Upputuri, P.K. and Pramanik, M. (2019). Photoacoustic imaging in the second near-infrared window: a review. J. Biomed. Opt. 24: 1–20, https://doi.org/10.1117/1.jbo.24.4.040901.Search in Google Scholar

Vella, M.A., Crandall, M.L., and Patel, M.B. (2017). Acute management of traumatic brain injury. Surg. Clin. 97: 1015–1030, https://doi.org/10.1016/j.suc.2017.06.003.Search in Google Scholar

Veronese, F.M. and Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discov. Today 10: 1451–1458, https://doi.org/10.1016/s1359-6446(05)03575-0.Search in Google Scholar

Wan, H., Yue, J., Zhu, S., Uno, T., Zhang, X., Yang, Q., Yu, K., Hong, G., Wang, J., Li, L., et al.. (2018). A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9: 1171, https://doi.org/10.1038/s41467-018-03505-4.Search in Google Scholar PubMed PubMed Central

Wang, P., Fan, Y., Lu, L., Liu, L., Fan, L., Zhao, M., Xie, Y., Xu, C., and Zhang, F. (2018). NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9: 2898, https://doi.org/10.1038/s41467-018-05113-8.Search in Google Scholar PubMed PubMed Central

Wang, D., Lee, M., Xu, W., Shan, G., Zheng, X., Kwok, R., Lam, J., Hu, X., and Tang, B.Z. (2019a). Boosting non-radiative decay to do useful work: development of a multi-modality theranostic system from an AIEgen. Angew. Chem. 58: 5628–5632, https://doi.org/10.1002/anie.201900366.Search in Google Scholar PubMed

Wang, F., Wan, H., Ma, Z., Zhong, Y., Sun, Q., Tian, Y., Qu, L., Du, H., Zhang, M., Li, L., et al.. (2019b). Light-sheet microscopy in the near-infrared II window. Nat. Methods 16: 545–552, https://doi.org/10.1038/s41592-019-0398-7.Search in Google Scholar PubMed PubMed Central

Wang, S., Fan, Y., Li, D., Sun, C., Lei, Z., Lu, L., Wang, T., and Zhang, F. (2019c). Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10: 1058, https://doi.org/10.1038/s41467-019-09043-x.Search in Google Scholar PubMed PubMed Central

Wen, G., Li, X., Zhang, Y., Han, X., Xu, X., Liu, C., Chan, K., Lee, C.S., Yin, C., Bian, L., et al.. (2020). Effective phototheranostics of brain tumor assisted by near-infrared-II light-responsive semiconducting polymer nanoparticles. ACS Appl. Mater. Interfaces 12: 33492–33499, https://doi.org/10.1021/acsami.0c08562.Search in Google Scholar PubMed

Wu, Y. and Zhu, W. (2013). Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42: 2039–2058, https://doi.org/10.1039/c2cs35346f.Search in Google Scholar PubMed

Wu, W., Yang, Y.Q., Yang, Y., Yang, Y.M., Wang, H., Zhang, K.Y., Guo, L., Ge, H.F., Liu, J., and Feng, H. (2019). An organic NIR-II nanofluorophore with aggregation-induced emission characteristics for in vivo fluorescence imaging. Int. J. Nanomed. 14: 3571–3582, https://doi.org/10.2147/ijn.s198587.Search in Google Scholar PubMed PubMed Central

Xi, Y., Yang, J., Ge, Y., Zhao, S., Wang, J., Li, Y., Hao, Y., Chen, J., and Zhu, Y. (2017). One-pot synthesis of water-soluble near-infrared fluorescence rnase a capped cuins2 quantum dots for in vivo imaging. RSC Adv. 7: 50949–50954, https://doi.org/10.1039/c7ra08418h.Search in Google Scholar

Xu, W., Wang, D., and Tang, B.Z. (2021). NIR-II AIEgens: a win-win integration towards bioapplications. Angew. Chem. 60: 7476–7487, https://doi.org/10.1002/anie.202005899.Search in Google Scholar PubMed

Xue, Z., Zeng, S., and Hao, J. (2018). Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm. Biomaterials 171: 153–163, https://doi.org/10.1016/j.biomaterials.2018.04.037.Search in Google Scholar PubMed

Yakavets, I., Francois, A., Guiot, M., Lequeux, N., Fragola, A., Pons, T., Bezdetnaya, L., and Marchal, F. (2020). NIR imaging of the integrin-rich head and neck squamous cell carcinoma using ternary copper indium selenide/zinc sulfide-based quantum dots. Cancers 12: 3727, https://doi.org/10.3390/cancers12123727.Search in Google Scholar PubMed PubMed Central

Yang, Y., Chen, J., Yang, Y., Xie, Z., Song, L., Zhang, P., Liu, C., and Liu, J. (2019). A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. Nanoscale 11: 7754–7760, https://doi.org/10.1039/c9nr00552h.Search in Google Scholar PubMed

Yang, Y., Yu, Y., Chen, H., Meng, X., Ma, W., Yu, M., Li, Z., Li, C., Liu, H., Zhang, X., et al.. (2020). Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano 14: 13536–13547, https://doi.org/10.1021/acsnano.0c05541.Search in Google Scholar PubMed

Yang, Y., Tu, D., Zhang, Y., Zhang, P., and Chen, X. (2021). Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. Science 24: 102062, https://doi.org/10.1016/j.isci.2021.102062.Search in Google Scholar PubMed PubMed Central

Yu, H. and Ji, M. (2021). Recent advances of organic near-infrared II fluorophores in optical properties and imaging functions. Mol. Imag. Biol. 23: 160–172, https://doi.org/10.1007/s11307-020-01545-1.Search in Google Scholar PubMed

Yu, W.B., Guo, B., Zhang, H.Q., Zhou, J., Yu, X.M., Zhu, L., Xue, D.W., Liu, W., Sun, X.H., and Qian, J. (2019a). NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci. Bull. 64: 410–416, https://doi.org/10.1016/j.scib.2019.02.019.Search in Google Scholar

Yu, X., Feng, Z., Cai, Z., Jiang, M., Xue, D., Zhu, L., Zhang, Y., Liu, J., Que, B., Yang, W., et al.. (2019b). Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy. J. Mater. Chem. B 7: 6623–6629, https://doi.org/10.1039/c9tb01381d.Search in Google Scholar PubMed

Yu, Z., Eich, C., and Cruz, L.J. (2020). Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front. Chem. 8: 496, https://doi.org/10.3389/fchem.2020.00496.Search in Google Scholar PubMed PubMed Central

Yu, Z., Chan, W.K., Zhang, Y., and Tan, T. (2021). Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 269: 120459, https://doi.org/10.1016/j.biomaterials.2020.120459.Search in Google Scholar PubMed

Zhang, T., Ge, J., Hu, Y., and Yin, Y. (2007). A general approach for transferring hydrophobic nanocrystals into water. Nano Lett. 7: 3203–3207, https://doi.org/10.1021/nl071928t.Search in Google Scholar PubMed

Zhang, X.D., Wang, H., Antaris, A.L., Li, L., Diao, S., Ma, R., Nguyen, A., Hong, G., Ma, Z., Wang, J., et al.. (2016). Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28: 6872–6879, https://doi.org/10.1002/adma.201600706.Search in Google Scholar PubMed PubMed Central

Zhang, R.R., Schroeder, A.B., Grudzinski, J.J., Rosenthal, E.L., Warram, J.M., Pinchuk, A.N., Eliceiri, K.W., Kuo, J.S., and Weichert, J.P. (2017). Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14: 347–364, https://doi.org/10.1038/nrclinonc.2016.212.Search in Google Scholar PubMed PubMed Central

Zhang, C., Jiang, D., Huang, B., Wang, C., Zhao, L., Xie, X., Zhang, Z., Wang, K., Tian, J., and Luo, Y. (2019). Methylene blue-based near-infrared fluorescence imaging for breast cancer visualization in resected human tissues. Technol. Canc. Res. Treat. 18: 1533033819894331. https://doi.org/10.1177/1533033819894331.Search in Google Scholar PubMed PubMed Central

Zhang, X., He, S.Q., Ding, B.B., Qu, C.R., Zhang, Q., Chen, H., Sun, Y., Fang, H.Y., Long, Y., Zhang, R.P., et al.. (2020a). Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem. Eng. J. 385: 123959, https://doi.org/10.1016/j.cej.2019.123959.Search in Google Scholar

Zhang, Z., Fang, X., Liu, Z., Liu, H., Chen, D., He, S., Zheng, J., Yang, B., Qin, W., Zhang, X., et al.. (2020b). Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew. Chem. 59: 3691–3698, https://doi.org/10.1002/anie.201914397.Search in Google Scholar PubMed

Zhang, Y., Zhang, S., Zhang, Z., Ji, L., Zhang, J., Wang, Q., Guo, T., Ni, S., Cai, R., Mu, X., et al.. (2021). Recent progress on NIR-II photothermal therapy. Front. Chem. 9: 728066, https://doi.org/10.3389/fchem.2021.728066.Search in Google Scholar PubMed PubMed Central

Zhao, J., Zhong, D., and Zhou, S. (2018). NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 6: 349–365, https://doi.org/10.1039/c7tb02573d.Search in Google Scholar PubMed

Zhao, D.H., Yang, X.Q., Hou, X.L., Xuan, Y., Song, X.L., Zhao, Y.D., Chen, W., Wang, Q., and Liu, B. (2019a). In situ aqueous synthesis of genetically engineered polypeptide-capped Ag2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. J. Mater. Chem. B 7: 2484–2492, https://doi.org/10.1039/c8tb03043j.Search in Google Scholar PubMed

Zhao, M., Wang, R., Li, B., Fan, Y., Wu, Y., Zhu, X., and Zhang, F. (2019b). Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew. Chem. Int. Ed. Engl. 58: 2050–2054, https://doi.org/10.1002/anie.201812878.Search in Google Scholar PubMed

Zhao, Z., Chen, C., Wu, W., Wang, F., Du, L., Zhang, X., Xiong, Y., He, X., Cai, Y., Kwok, R., et al.. (2019c). Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat. Commun. 10: 768, https://doi.org/10.1038/s41467-019-08722-z.Search in Google Scholar PubMed PubMed Central

Zheng, Y., Li, Q., Wu, J., Luo, Z., Zhou, W., Li, A., Chen, Y., Rouzi, T., Tian, T., Zhou, H., et al.. (2020). All-in-one mitochondria-targeted NIR-II fluorophores for cancer therapy and imaging. Chem. Sci. 12: 1843–1850, https://doi.org/10.1039/d0sc04727a.Search in Google Scholar PubMed PubMed Central

Zhong, Y., Ma, Z., Zhu, S., Yue, J., Zhang, M., Antaris, A.L., Yuan, J., Cui, R., Wan, H., Zhou, Y., et al.. (2017). Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8: 737, https://doi.org/10.1038/s41467-017-00917-6.Search in Google Scholar PubMed PubMed Central

Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., Zhao, X., Li, J., Du, H., Zhang, M., et al.. (2019). In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37: 1322–1331, https://doi.org/10.1038/s41587-019-0262-4.Search in Google Scholar PubMed PubMed Central

Zhou, H., Yi, W., Li, A., Wang, B., Ding, Q., Xue, L., Zeng, X., Feng, Y., Li, Q., Wang, T., et al.. (2020a). Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis. Adv. Healthc. Mater. 9: e1901224, https://doi.org/10.1002/adhm.201901224.Search in Google Scholar PubMed

Zhou, H., Zeng, X., Li, A., Zhou, W., Tang, L., Hu, W., Fan, Q., Meng, X., Deng, H., Duan, L., et al.. (2020b). Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat. Commun. 11: 6183, https://doi.org/10.1038/s41467-020-19945-w.Search in Google Scholar PubMed PubMed Central

Zhu, S., Yung, B.C., Chandra, S., Niu, G., Antaris, A.L., and Chen, X. (2018). Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics 8: 4141–4151, https://doi.org/10.7150/thno.27995.Search in Google Scholar PubMed PubMed Central

Received: 2021-06-29
Accepted: 2021-09-02
Published Online: 2021-09-22
Published in Print: 2022-07-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0088/html
Scroll to top button