Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag February 25, 2021

Modelling damping in piezoceramics: A comparative study

Modellierung von Dämpfung in Piezokeramiken: Eine vergleichende Betrachtung
  • Nadine Feldmann

    Nadine Feldmann, M. Sc. is a research associate at the Measurement Engineering Group at the Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. Her field of research includes inverse measurement procedures and the characterisation of piezoelectric ceramics.

    EMAIL logo
    , Veronika Schulze

    Veronika Schulze, M. Sc. is a research associate at the Department of Mathematics at Humboldt-Universität zu Berlin. Her research includes the simulation and theory of partial differential equations describing piezoelectric behaviour and corresponding optimization of piezoelectric problems.

    , Leander Claes

    Leander Claes, M. Sc. completed his studies in electrical engineering in 2014. Since 2015, he has been a research associate and, starting mid-2016, deputy head of the Measurement Engineering Group at Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His research includes the development of acoustic measurement procedures, with a focus on material and fluid characterisation applications.

    , Benjamin Jurgelucks

    Dr. Benjamin Jurgelucks is a postdoctoral research associate at the Department of Mathematics at Humboldt-Universität zu Berlin. His main area of research is nonlinear optimization, parameter identification and inverse problems especially in an engineering context.

    , Lars Meihost

    Lars Meihost completed his studies in electrical engineering in 2018. He then worked as a hardware engineer and programmer at Meinberg Funkuhren GmbH & Co. KG. In late 2020, he joined the Measurement Engineering Group at Paderborn University as a laboratory engineer.

    , Andrea Walther

    Prof. Dr. Andrea Walther has been full professor for Mathematical Optimization at the Department of Mathematics at the Humboldt-Universität zu Berlin since 2019. Her main research interests are nonlinear optimization and scientific computing.

    and Bernd Henning

    Prof. Dr.-Ing. Bernd Henning is head of the Measurement Engineering Group at Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His main areas of research are acoustic measurement procedures, ultrasonic and optical measurement engineering as well as biomedical measurement techniques.

From the journal tm - Technisches Messen

Abstract

The progress in numerical methods and simulation tools promotes the use of inverse problems in material characterisation problems. A newly developed procedure can be used to identify the behaviour of piezoceramic discs over a wide frequency range using a single specimen via fitting simulated and measured impedances by optimising the underlying material parameters. Since there is no generally accepted damping model for piezoelectric ceramics, several mechanical damping models are examined for the material identification. Three models have been chosen and their ability to replicate the measured impedances is evaluated. On the one hand, the common Rayleigh model is considered as a reference. On the other hand, a Zener model and a model using complex constants are extended to model the transversely isotropic material. As the Rayleigh model is only valid for a limited frequency range, it fails to model the broadband behaviour of the material. The model using complex constants leads to the best fit over a wide frequency range while at the same time only adding three additional parameters for modelling damping. Thus, damping can be assumed approximately frequency-independent in piezoceramics.

Zusammenfassung

Die Verwendung inverser Verfahren im Kontext von Materialcharakterisierung wird durch die Entwicklung numerischer Verfahren und Simulationswerkzeugen vorangetrieben. Ein neu entwickeltes Verfahren kann dazu verwendet werden, das Verhalten von piezokeramischen Scheiben über einen weiten Frequenzbereich unter Verwendung einer einzelnen Probe zu identifizieren, indem simulierte Impedanzen durch Variation der Materialparameter so optimiert werden, dass gemessene Impedanzen möglichst gut nachgebildet werden. Da es kein allgemein akzeptiertes Dämpfungsmodell für piezoelektrische Keramiken gibt, werden mehrere mechanische Dämpfungsmodelle untersucht. Dazu werden drei Modelle ausgewählt und evaluiert. Zum einen wird das gängige Rayleigh-Modell als Referenz betrachtet. Zum anderen werden ein Zener-Modell und ein Modell mit komplexen Konstanten erweitert, um das transversal isotrope Material zu modellieren. Da das Rayleigh-Modell nur für einen begrenzten Frequenzbereich gültig ist, kann es das Breitbandverhalten des Materials nicht modellieren. Das Modell mit komplexen Konstanten führt über einen weiten Frequenzbereich zur besten Anpassung und benötigt gleichzeitig nur drei zusätzliche Parameter für die Modellierung der Dämpfung. Somit kann bei Piezokeramiken eine annähernd frequenzunabhängige Dämpfung angenommen werden.

Award Identifier / Grant number: 321120716

Funding statement: The authors would like to thank the German Research Foundation (DFG) for financial support of the research project 321120716.

About the authors

Nadine Feldmann

Nadine Feldmann, M. Sc. is a research associate at the Measurement Engineering Group at the Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. Her field of research includes inverse measurement procedures and the characterisation of piezoelectric ceramics.

Veronika Schulze

Veronika Schulze, M. Sc. is a research associate at the Department of Mathematics at Humboldt-Universität zu Berlin. Her research includes the simulation and theory of partial differential equations describing piezoelectric behaviour and corresponding optimization of piezoelectric problems.

Leander Claes

Leander Claes, M. Sc. completed his studies in electrical engineering in 2014. Since 2015, he has been a research associate and, starting mid-2016, deputy head of the Measurement Engineering Group at Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His research includes the development of acoustic measurement procedures, with a focus on material and fluid characterisation applications.

Benjamin Jurgelucks

Dr. Benjamin Jurgelucks is a postdoctoral research associate at the Department of Mathematics at Humboldt-Universität zu Berlin. His main area of research is nonlinear optimization, parameter identification and inverse problems especially in an engineering context.

Lars Meihost

Lars Meihost completed his studies in electrical engineering in 2018. He then worked as a hardware engineer and programmer at Meinberg Funkuhren GmbH & Co. KG. In late 2020, he joined the Measurement Engineering Group at Paderborn University as a laboratory engineer.

Andrea Walther

Prof. Dr. Andrea Walther has been full professor for Mathematical Optimization at the Department of Mathematics at the Humboldt-Universität zu Berlin since 2019. Her main research interests are nonlinear optimization and scientific computing.

Bernd Henning

Prof. Dr.-Ing. Bernd Henning is head of the Measurement Engineering Group at Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His main areas of research are acoustic measurement procedures, ultrasonic and optical measurement engineering as well as biomedical measurement techniques.

References

1. J. L. San Emeterio, “Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, no. 1, pp. 108–113, 1997.10.1109/58.585203Search in Google Scholar

2. M. Lethiecq, F. Patat, L. Pourcelot, and L. P. Tran-Huu-Hue, “Measurement of losses in five piezoelectric ceramics between 2 and 50 MHz,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, no. 3, pp. 232–237, 1993.10.1109/58.216836Search in Google Scholar

3. J. L. San Emeterio, P. T. Sanz, and A. Ramos, “Influence of dielectric losses on the shift of the fundamental frequencies of thickness mode piezoelectric ceramic resonators,” Journal of the European Ceramic Society, vol. 19, no. 6-7, pp. 1165–1169, 1999.10.1016/S0955-2219(98)00393-8Search in Google Scholar

4. G. Bertotti and I. D. Mayergoyz, The Science of Hysteresis. Amsterdam: Academic, 2006.Search in Google Scholar

5. “IEEE Standard on Piezoelectricity,” 1987.Search in Google Scholar

6. N. Feldmann, V. Schulze, L. Claes, B. Jurgelucks, A. Walther, and B. Henning, “Inverse piezoelectric material parameter characterization using a single disc-shaped specimen,” tm - Technisches Messen, vol. 87, no. s1, pp. 50–55, 2020.10.1515/teme-2020-0012Search in Google Scholar

7. W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology, vol. 114. Berlin: Springer, 2008.10.1007/978-3-540-68683-5_1Search in Google Scholar

8. H. Cohen, Complex Analysis with Applications in Science and Engineering. Boston: Springer, 2007.10.1007/978-0-387-73058-5Search in Google Scholar

9. D. Gutierrez-Lemini, Engineering Viscoelasticity. Boston, MA and s. l.: Springer US, 2014.10.1007/978-1-4614-8139-3Search in Google Scholar

10. P. S. Theocaris, “Sorting out the elastic anisotropy of transversely isotropic materials,” Acta Mechanica, vol. 143, no. 3-4, pp. 129–140, 2000.10.1007/BF01170943Search in Google Scholar

11. F. Bause, A. Schröder, J. Rautenberg, B. Henning, and H. Gravenkamp, “Time-causal material modeling in the simulation of guided waves in circular viscoelastic waveguides,” in 2014 IEEE International Ultrasonics Symposium, pp. 1348–1351. IEEE, 2014.10.1109/ULTSYM.2014.0333Search in Google Scholar

12. S. J. Rupitsch and J. Ilg, “Complete characterization of piezoceramic materials by means of two block-shaped test samples,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 7, pp. 1403–1413, 2015.10.1109/TUFFC.2015.006997Search in Google Scholar PubMed

13. S. J. Rupitsch, A. Sutor, J. Ilg, and R. Lerch, “Identification procedure for real and imaginary material parameters of piezoceramic materials,” in 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, pp. 1214–1217, 2010.10.1109/ULTSYM.2010.5935504Search in Google Scholar

14. B. Jurgelucks, L. Claes, A. Walther, and B. Henning, “Optimization of triple-ring electrodes on piezoceramic transducers using algorithmic differentiation,” Optimization Methods and Software, pp. 1–21, 2018.10.1080/10556788.2018.1435652Search in Google Scholar

15. N. Feldmann, V. Schulze, B. Jurgelucks, and B. Henning, “Solving piezoelectric inverse problems using Algorithmic Differentiation,” in Forschritte der Akustik, pp. 1125–1128. Deutsche Gesellschaft für Akustik e. V., 2020.Search in Google Scholar

16. N. Feldmann, B. Jurgelucks, L. Claes, and B. Henning, “A sensitivity-based optimisation procedure for the characterisation of piezoelectric discs,” in 2019 International Congress on Ultrasonics, ASA, 2019.10.1121/2.0001070Search in Google Scholar

17. N. Feldmann and B. Henning, “Efficient optimisation of initial values for characterising piezoelectric material parameters,” in Fortschritte der Akustik, pp. 1275–1278, 2018.Search in Google Scholar

Received: 2020-12-14
Accepted: 2021-02-09
Published Online: 2021-02-25
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/teme-2020-0096/html
Scroll to top button