Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 4, 2019

Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate crystal

  • Sivakumar Aswathappa , Sahaya Jude Dhas Sathiyadhas , Balachandar Settu and Martin Britto Dhas Sathiyadhas Amalapushpam EMAIL logo

Abstract

In this research article, the authors pay attention to investigate the effect of structural and dielectric properties of ammonium dihydrogen phosphate (ADP) crystal under pre and post shock loaded conditions. A shock wave of Mach number 1.9 was utilized for the present investigation which was generated by a table-top pressure driven shock tube. The crystalline nature and grain size variations were estimated by powder X-ray diffraction technique. The grain size of post shock wave loaded ADP crystal is found to be larger than that of the pre shock wave loaded ADP crystal. The dielectric properties of the pre and post shock loaded crystals were analyzed by impedance analyzer as a function of frequency (1 kHz–1 MHz) at ambient temperature. The dielectric constant is observed to be varying from 346 to 362 at the frequency of 400 kHz for pre and post shock wave loaded ADP crystals, respectively. The obtained results suggest that shock waves can be an alternate tool to tailor the physical properties of materials without creating any change in the original crystal system and surface morphology.

Acknowledgements

The Authors thank the management of Sacred Heart College for the financial support through Don Bosco Research Grant (SHC/DB Grant/2017/01).

  1. Compliance with ethical standards: None.

  2. Conflict of interest: The authors declare that they have no conflict of interest.

References

[1] K. Takayama, T. Saito, Shock wave/geophysical and medical applications. Ann. Rev. Fluid Mech.2004, 36, 47.10.1146/annurev.fluid.36.050802.121954Search in Google Scholar

[2] S. Kalaiarasi, A. Sivakumar, S. A. Martin Britto Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett.2018, 219, 72.10.1016/j.matlet.2018.02.064Search in Google Scholar

[3] A. Sivakumar, S. Suresh, J. Anto Pradeep, S. Balachandar, S. A. Martin Britto Dhas, Effect of shock waves on dielectric properties of KDP crystal. J. Electron Mater.2018, 47, 4831.10.1007/s11664-018-6362-ySearch in Google Scholar

[4] V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, A. M. Guivan, P. M. Lukach, Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals. Condens. Matter. Phys.2003, 6, 271.10.5488/CMP.6.2.271Search in Google Scholar

[5] S. Jiang, T. D. Sewell, D. L. Thompson, Molecular dynamics simulations of shock wave propagation through the crystal-melt interface of (100)-oriented nitromethane. J. Phys. Chem. C2016, 120, 22989.10.1021/acs.jpcc.6b07002Search in Google Scholar

[6] E. V. Boldyreva, N. Ivashevskaya, H. Sowa, H. Ahsbahs, H.-P. Weber, Effect of hydrostatic pressure on the g-polymorph of glycine 1. A polymorphic transition into a new d-form. Z. Kristallogr.2005, 220, 50.10.1524/zkri.220.1.50.58886Search in Google Scholar

[7] E. V. Boldyreva, High-pressure studies of the hydrogen bond networks in molecular crystals. J. Mol. Struct.2004, 700, 151.10.1016/j.molstruc.2004.03.026Search in Google Scholar

[8] E. V. Boldyreva, S. N. Ivashevskaya, H. Sowa, H. Ahsbahs, H. P. Weber, Effect of high pressure on crystalline glycine: a new high-pressure polymorph. Dokl. Phys. Chem.2004, 396, 111.10.1023/B:DOPC.0000029166.57397.2dSearch in Google Scholar

[9] R. J. Hemley, Effects of high pressure on molecules. Ann. Rev. Phys. Chem.2000, 51, 763.10.1146/annurev.physchem.51.1.763Search in Google Scholar PubMed

[10] P. K. Shetty, P. P. Vinaya, R. Nakshatri, A. N. Prabhu, Optik2018, 156, 224.10.1016/j.ijleo.2017.10.099Search in Google Scholar

[11] G. J. Kleiser, L. C. Chhabildas, W. D. Reinhart, Comparison of dynamic compression behavior of single crystal sapphire to polycrystalline alumina. Int. J. Impact Eng. 2011, 38, 473.10.1016/j.ijimpeng.2010.10.018Search in Google Scholar

[12] G. I. Kanel, V. E. Fortov, S. V. Razorenov, Shock waves in condensed-state physics. Phys. Uspekhi2007, 50, 771.10.1070/PU2007v050n08ABEH006327Search in Google Scholar

[13] J. Zhang, P. S. Branicio, Molecular dynamics simulations of plane shock loading in SiC. Procidia Eng.2014, 75, 150.10.1016/j.proeng.2013.11.032Search in Google Scholar

[14] W. Zhu, Z. Song, X. Deng, H. He, X. Cheng, Lattice orientation effect on the nanovoid growth in copper under shock loading. Phys. Rev.2007, 75, 024104.10.1103/PhysRevB.75.024104Search in Google Scholar

[15] S.-N. Luo, T. C. Germann, D. L. Tonks, Q. An, Shock wave loading and spallation of copper bicrystals with asymmetric ∑3<110> tilt grain boundaries. J. Appl. Phys.2010, 108, 0935261.10.1063/1.3506707Search in Google Scholar

[16] D. E. Hooks, K. J. Ramos, A. R. Martinez, Elastic–plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa. J. Appl. Phys.2006, 100, 0249081.Search in Google Scholar

[17] F. Mullar, E. Schulte, Shock wave compression of NaCl single crystals observed by Flash –X-ray diffraction. Z. Naturforsch. A1978, 33, 918.10.1515/zna-1978-0809Search in Google Scholar

[18] Z. A. Derger, Y. A. Gruzdkov, Y. M. Gupta, J. J. Dick, Shock wave induced decomposition chemistry of pentaerythritol Tetraanitra single crystals: time resolved emission spectroscopy. J. Phys. Chem. B2002, 106, 247.10.1021/jp011682vSearch in Google Scholar

[19] P. A. Urtiew, Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys.1974, 45, 3490.10.1063/1.1663807Search in Google Scholar

[20] S. T. Weir, A. C. Mitchell, W. J. Nellis, Electrical resistivity of single crystal Al2O3 shock compressed in the pressure range 91–220 GPa. J. Appl. Phys.1996, 80, 1522.10.1063/1.362946Search in Google Scholar

[21] K. Kadau, T. C. Germann, P. Lomdahl, B. Lee Holian, Microscopic view of structural phase transformation induced by shock waves. Science2002, 296, 1681.10.1126/science.1070375Search in Google Scholar PubMed

[22] P. Wang, L. Tang, J. L. Shao, J. S. Zhu, Effect of wave-front width on micro-jet from a shocked aluminum surface. Procedia Eng.2011, 10, 3327.10.1016/j.proeng.2011.04.549Search in Google Scholar

[23] B. P. Chandra, S. Parganiha, V. D. Sonwane, V. K. Chandra, P. Jha, R. N. Baghe, Shock-wave induced mechanoluminescence: a new technique for studying effects of shock pressure on crystals. J. Luminesc.2016, 178, 196.10.1016/j.jlumin.2016.05.046Search in Google Scholar

[24] S. N. Luo, D. C. Swift, T. E. Tiernery, D. L. Paisely, G. A. Kyrala, R. P. Johnson, A. A. Johnson, A. A. Hauer, O. Tschauner, P. D. Asimow, Laser-induced shock waves in condensed matter: some techniques and applications. High Press. Res.2004, 24, 409.10.1080/08957950412331331709Search in Google Scholar

[25] M. Stoffel, A measurement technique for shock wave-loaded structures and its applications. Exp. Mech.2006, 46, 47.10.1007/s11340-006-5870-5Search in Google Scholar

[26] S. Goma, C. M. Padma C. K. Mahadevan, Dielectric parameters of KDP single crystals added with urea. Mater. Lett.2006, 60, 3701.10.1016/j.matlet.2006.03.092Search in Google Scholar

[27] Z. M. Elimat, AC–impedance and dielectric properties of hybrid polymer composites. J. Comp. Mater.2013, 49, 1.10.1177/0021998313514256Search in Google Scholar

[28] V. S. Shusta, I. P. Prits, P. P. Guranich, E. I. Gerzanich, A. G. Silvika, Dielectric properties of CuInP2S6 crystals under high pressure. Condens. Mater. Phys.2007, 10, 91.10.5488/CMP.10.1.91Search in Google Scholar

[29] G. A. Samara, Pressure dependence of the static and dynamic properties of KH2PO4 and related ferroelectric and antiferroelectric crystals. Ferroelectrics1987, 71, 161.10.1080/00150198708224836Search in Google Scholar

[30] M. Anis, S. S. Hussaini, M. D. Shirsat, R. N. Shaikh, G. G. Muley, Analysis of the X-ray diffraction, etching, luminescence, photoconductivity, thermal and dielectric properties of an ADP crystal influenced by the bimetallic additive sodium metasilicate (Na2 SiO3). Mater. Res. Express2016, 3, 1062041.10.1088/2053-1591/3/10/106204Search in Google Scholar

[31] P. Rajesh, P. Ramasamy, Effect of oxalic acid on the optical, thermal, dielectric, and mechanical behavior of ADP crystals. Phys. B2009, 404, 1611.10.1016/j.physb.2009.01.032Search in Google Scholar

[32] P. Rajesh, P. Ramasamy, C. K. Mahadevan, Effect of Ni2+ on the structural, optical, thermal and dielectric properties of ADP crystals. Mater. Lett.2010, 64, 1140.10.1016/j.matlet.2010.02.030Search in Google Scholar

[33] P. Rajesh, P. Ramasamy, C. K. Mahadevan, Effect of L-lysine monohydrochloride dehydrate on the growth and properties of ammonium dihydrogen orthophosphate single crystals. J. Crystal Growth2009, 311, 1156.10.1016/j.jcrysgro.2008.11.091Search in Google Scholar

[34] A. Sivakumar, M. Suresh, S. Balachnader, J. Thirupthy, J. Klayanasundar, S. A. Martin Britto Dhas, Effect of shock waves on thermophysical properties ADP and KDP crystals. Optic. Laser Technol.. 2019, 111, 284.10.1016/j.optlastec.2018.10.001Search in Google Scholar

[35] M. Aguilo, C. F. Woensdregt, Crystal morphology of ADP (NH 4H 2PO 4): a qualitative approach. J. Crystal Growth1984, 69, 527.10.1016/0022-0248(84)90364-6Search in Google Scholar

[36] K. R. J. Davey, J. W. Mullin, The effect of pH on growth {100} faces on ADP crystals. Kristall Technik1976, 11, 229.10.1002/crat.19760110303Search in Google Scholar

[37] K. P. J. Reddy, N. Sharath. A manually operated piston driven shock tube. Curr. Sci.2013, 104, 172.Search in Google Scholar

[38] M. Manivannan, S. A. Martin Britto Dhas, M. Jose, Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: an efficient terahertz emitter. J. Crystal Growth2016, 455, 161.10.1016/j.jcrysgro.2016.09.053Search in Google Scholar

[39] D. Shamiryan, T. Abell, F. Iacopi, K. Maex, Low-k dielectric materials. Mater. Today2004, 7, 34.10.1016/S1369-7021(04)00053-7Search in Google Scholar

[40] X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dietric2013, 3, 13300011.10.1142/S2010135X13300016Search in Google Scholar

[41] R. Yimnirun, S. Ananta, E. Meechoowas, S. Wonsaennmai, Effects of uniaxial stress on dielectric properties lead magnesium niobate-lead zirconate titanate ceramics. J. Phys. D: Appl. Phys.2003, 36, 1615.10.1088/0022-3727/36/13/329Search in Google Scholar

[42] R. Yimnirun, S. Wonsaennmai, A. Ngamjarurojana, S. Ananta, Effects of uniaxial stress on dielectric properties of ferroelectric ceramics. Curr. Appl. Phys.2006, 6, 520.10.1016/j.cap.2005.11.053Search in Google Scholar

[43] M. Pandey, G. M. Joshi, K. Deshumkh, J. Ahamd, Impedance spectroscopy and conductivity studies of CdCl2 doped polymer electrolyte. Adv. Mater. Lett.2015, 6, 165.10.5185/amlett.2015.5639Search in Google Scholar

[44] Kurnia, Heriansyah, E. Suharyadi, IOP Conf. Ser.2017, 202, 012046.10.1088/1757-899X/202/1/012046Search in Google Scholar

[45] X. E. S. Kim, C. J. Jeon, IEEE2011, 58, 1939.10.1109/TUFFC.2011.2034Search in Google Scholar

[46] E. Matsushita, Tunneling mechanism on proton conduction in perovskite oxides. Solid State Ionics2001, 145, 445.10.1016/S0167-2738(01)00942-0Search in Google Scholar

[47] J. H. Joshi, K. P. Dixit, M. J. Joshi, K. D. Parikh, Study on A. C. electrical properties of pure and Lserine doped ADP crystals. AIP Conf. Proc.2016, 1728, 020219.Search in Google Scholar

[48] K. M. Johnson, Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys.1962, 33, 2826.10.1063/1.1702558Search in Google Scholar

Received: 2018-12-21
Accepted: 2019-05-01
Published Online: 2019-09-04
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2018-2159/html
Scroll to top button