Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 29, 2019

Stacking polytypes of mixed alkali gallides/indides A1–2(Ga/In)3 (A=K, Rb, Cs): synthesis, crystal chemistry and chemical bonding

  • Martha Falk and Caroline Röhr EMAIL logo

Abstract

The Ga/In phase width (y) and the distribution of the two triels within the polyanions of known binary (x = 1, 2) and new ternary ‘intermediate’ (x = 1–2) alkali trielides Ax(Ga1−yIny)3 (A = K, Rb, Cs) was investigated in a synthetic (slow cooling of the melts of the three elements), crystallographic (X-ray single crystal) and bond theoretical (FP-LAPW DFT bandstructure calculation) study. The Cs2In3-type structure (x = 2, series A, tetragonal, I 4/mmm) exhibits layers of four-connected closo octahedra [M6]4−. Ternary K compounds of this type were yielded within a large range (y = 0–0.87), whereas isotypic Rb/Cs trielides exist only at higher In contents (>52/69%). Geometric criteria determine not only the Ga/In stability ranges but also the occurrence of a commensurate superstructure at approx. 33% In (K2Ga2.17In0.83: P 42/ncm, a = 879.83(4), c = 1557.66(10) pm, R 1 = 0.0887), in which the octahedra are slightly tilted against the layers. Cesium compounds of the RbGa3-type structure (x = 1, C, tetragonal, I 4̅m2), which exhibits a 3D network of all-exo bonded closo dodecahedra [M8]2− and four-bonded M anions, are stable throughout the whole substitutional range CsGa3–CsIn3. The maximum possible In content increases with increasing size of A+ (Cs: 100%, Rb: 30%, K: 8% In). The similarities between these two tetragonal structures are consistent with the occurrence of two new structure types of ‘intermediate’ compounds A7M15 (x = 1.4, 1B/2B), which differ in the stacking sequences of double layers of novel six-fold exo-bonded pentagonal bipyramidal closo clusters [M7]3− connected via four-bonded M (e.g. 1B: Cs7Ga8.4In6.6, P 4̅m2, a = 656.23(3), c = 1616.0(1) pm, R 1 = 0.0742; 2B: Rb7Ga8.1In6.9, P 42/nmc, a = 665.64(2), c = 3140.9(2) pm, R 1 = 0.0720). The Rb/Cs compounds of these types are only stable in a limited Ga/In region and with a distinct Ga/In distribution within the [M7] clusters. According to the close relation between the structures A, B and C, the structure family is characterised by the occurrence of stacking faults and diffuse scattering, indicating the existence of further members of this series. The new compound Cs5Ga3.1In5.9 (x = 1.667, P 4̅m2, a = 654.62(2), c = 3281.5(2) pm, R 1 = 0.1005) is a reasonably periodically ordered stacking variant containing layers A and double layers B in parallel.

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft for financial support and Philipp Schuldis for help with the preparative work.

References

[1] C. Belin, M. Tillard-Charbonnel, Aspects of anionic framework formation: clustering of p-block elements. Coord. Chem. Rev.1998, 178–180, 529.10.1016/S0010-8545(98)00168-4Search in Google Scholar

[2] R. B. King, Metal cluster topology. 10. Polyhedral gallium cluster anions in intermetallic phases of gallium and alkali metals. Inorg. Chem.1989, 28, 2796.10.1021/ic00313a021Search in Google Scholar

[3] J. D. Corbett, Exploratory synthesis: The fascinating and diverse chemistry of polar intermetallic phases. Inorg. Chem.2010, 49, 13.10.1021/ic901305gSearch in Google Scholar

[4] C. Belin, R. G. Ling, The intermetallic phases of gallium and alkali metals. Interpretation of the structures according to Wade’s electron-counting methods. J. Solid State Chem.1983, 48, 40.10.1016/0022-4596(83)90057-9Search in Google Scholar

[5] J. D. Corbett, Polyanionische Cluster und Netzwerke der frühen p-Metalle im Festkörper: jenseits der Zintl-Grenze. Angew. Chem.2000, 112, 682.10.1002/(SICI)1521-3757(20000218)112:4<682::AID-ANGE682>3.0.CO;2-3Search in Google Scholar

[6] E. Zintl, S. Neumayr, Über den Gitterbau von NaIn und die Deformation der Atome in Legierungen. Z. Phys. Chem. B1933, 20, 272.10.1515/zpch-1933-2024Search in Google Scholar

[7] S. Sevov, J. D. Corbett, Synthesis, characterization, and bonding of indium cluster phases: Na15In27.4, a network of In16 and In11 clusters; Na2In with isolated indium tetrahedra. J. Solid State Chem.1993, 103, 114.10.1006/jssc.1993.1084Search in Google Scholar

[8] S. P. Yatsenko, E. I. Gladyshevskii, K. A. Chuntonov, Y. P. Yarmolyuk, Y. N. Grin, The crystal structure of KGa3. Kristallografiya1983, 28, 809.Search in Google Scholar

[9] J. H. N. van Vucht, On the crystal structures of some compounds of gallium with potassium, rubidium and caesium. J. Less-Common Met.1985, 108, 163.10.1016/0022-5088(85)90440-0Search in Google Scholar

[10] R. G. Ling, C. Belin, Preparation and crystal structure determination of the new intermetallic compound RbGa3. Z. Anorg. Allg. Chem.1981, 480, 181.10.1002/zaac.19814800923Search in Google Scholar

[11] S. P. Yatsenko, K. A. Tschuntonow, A. N. Orlow, Y. P. Yarmolyuk, Y. N. Grin, Die Kristallstruktur von Cs2In3. J. Less-Common Met.1985, 108, 339.10.1016/0022-5088(85)90228-0Search in Google Scholar

[12] S. C. Sevov, J. D. Corbett, Synthesis, characterization, and bonding of indium clusters: Rb2In3, a Zintl-Phase with layers of closo-indium octahedra. Z. Anorg. Allg. Chem.1993, 619, 128.10.1002/chin.199312013Search in Google Scholar

[13] G. Cordier, V. Müller, Crystal structure of dirubidium triindide, Rb2In3, in the Cs2In3-type. Z. Kristallogr.1993, 203, 150.10.1524/zkri.1993.203.12.150Search in Google Scholar

[14] G. Cordier, V. Müller, Verbindungen an der Zintl-Grenze: Darstellung und Kristallstruktur von Na17Ga29In12 und K17In41. Z. Naturforsch.1994, 49b, 721.10.1515/znb-1994-0601Search in Google Scholar

[15] G. Cordier, V. Müller, Crystal structure of potassium indium 22-x/39+x (x=0.67), K21.33In39.67. Z. Kristallogr.1992, 198, 302.10.1524/zkri.1992.198.3-4.302Search in Google Scholar

[16] M. Wendorff, C. Röhr, Binäre Indide AInx (x=1, 2, 4; A=Ca, Sr, Ba, K, Rb): Untersuchungen zu Strukturchemie und chemischer Bindung. Z. Anorg. Allg. Chem.2005, 631, 338.10.1002/zaac.200400260Search in Google Scholar

[17] G. Bruzzone, The D13-structure type in intermetallic compounds. Acta Crystallogr.1969, B25, 1206.10.1107/S0567740869003761Search in Google Scholar

[18] W. Blase, G. Cordier, M. Somer, Crystal structure of potassium indium (8/11), K8In11. Z. Kristallogr.1991, 194, 150.10.1524/zkri.1991.194.14.150Search in Google Scholar

[19] S. C. Sevov, J. D. Corbett, A remarkable hyperelectronic indium cluster in K8In11. Inorg. Chem.1991, 30, 4875.10.1021/ic00026a004Search in Google Scholar

[20] W. Blase, G. Cordier, V. Müller, U. Häusermann, R. Nesper, M. Somer, Präparation und Kristallstrukturen von Rb8In11, K8Tl11 und Rb8Tl11 sowie Bandstrukturberechnungen an K8In11. Z. Naturforsch.1993, 48b, 754.10.1515/znb-1993-0609Search in Google Scholar

[21] R. W. Henning, J. D. Corbett, Cs8Ga11, a new isolated cluster in a binary gallium compound. A family of valence analogous A8Tr11X: A=Cs, Rb; Tr=Ga, In, Tl; X=Cl, Br, I. Inorg. Chem.1997, 36, 6045.10.1021/ic970904uSearch in Google Scholar PubMed

[22] M. Cobian, P. Alemany, A. Garcia, E. Canadell, Electronic structure of the A8Tr11 (A=K, Rb, Cs; Tr=Ga, In Tl) Zintl phases: Possible chemical reasons behind their activated versus non activated conductivity. Inorg. Chem.2009, 48, 9792.10.1021/ic9013637Search in Google Scholar

[23] M. Falk, A. El-Addad, C. Röhr, Crystal and electronic structure of alkali triel halogenides of the K8In11-type structure. Z. Kristallogr. Suppl.2017, 37, 112.Search in Google Scholar

[24] S. Gärtner, S. Tiefenthaler, N. Korber, S. Stempfhuber, B. Hischa, Structural chemistry of halide including thallides A8Tr11X1−n (A=K, Rb, Cs; X=Cl, Br, n=0.1–0.9). Crystals2018, 8, 319.10.3390/cryst8080319Search in Google Scholar

[25] R. W. Henning, J. D. Corbett, Formation of isolated nickel-centered gallium clusters in Na10Ga10Ni and a 2-D network of gallium octahedra in K2Ga3. Inorg. Chem.1999, 38, 3883.10.1021/ic990335lSearch in Google Scholar

[26] P. Hofmann. Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden. Dissertation, ETH Zürich, 1997.Search in Google Scholar

[27] R. W. Henning, J. D. Corbett, Novel oxidation of RbGa3 through substitution of gold for gallium – a reapportionment of the dodecahedral clusters. J. Alloys Comp.2002, 338, 4.10.1016/S0925-8388(02)00175-5Search in Google Scholar

[28] K. A. Tschuntonow, S. P. Yatsenko, Y. N. Grin, Y. Yarmolyuk, A. N. Orlow, Die Kristallstruktur von CsIn3. J. Less-Common Met.1984, 99, 15.10.1016/0022-5088(84)90331-XSearch in Google Scholar

[29] G. Cordier, V. Müller, Crystal structure of potassium indium gallium KIn2In1−xGax, x=1.12. Z. Kristallogr.1993, 205, 355.10.1524/zkri.1993.205.Part-2.355Search in Google Scholar

[30] V. Müller. ‘Verbindungen an der Zintl-Grenze’: Darstellung und Kristallstrukturen von Alkalimetall-Erdmetall- und Alkalimetall-Zink-Erdmetall-Verbindungen. Dissertation, TH Darmstadt, 1995.Search in Google Scholar

[31] G. J. Miller, The “Coloring Problem” in solids: how it affects structure, composition and properties. Eur. J. Inorg. Chem.1998, 5, 523.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSearch in Google Scholar

[32] M. Falk, C. Meyer, C. Röhr, The new mixed cluster trielide K3Ga11−xInx (x=1.16–1.36): synthesis, crystal chemistry and chemical bonding. Z. Anorg. Allg. Chem.2017, 643, 2070.10.1002/zaac.201700369Search in Google Scholar

[33] W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys. Wiley Interscience, New York, London, Syndey, Toronto, 1972.Search in Google Scholar

[34] L. Pauling, The Nature of the Chemical Bond. Cornell University Press, Ithaca, New York, 1960.Search in Google Scholar

[35] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Covalent radii revisited. Dalton Trans.2008, 21, 2832.10.1039/b801115jSearch in Google Scholar

[36] W. Harms, M. Wendorff, C. Röhr, Gemischte Erdalkalimetall-Trielide AIIM1IIIxM2III2−x: AII=Ca, Sr, Ba; MIII=Al, Ga, In). Strukturchemische und bindungstheoretische Untersuchungen. Z. Naturforsch.2007, 62b, 177.10.1515/znb-2007-0207Search in Google Scholar

[37] M. Falk, C. Meyer, M. Kledt, C. Röhr, Mixed alkali/alkaline earth trielides of the BaAl4-type structure: a combined synthetic, crystallographic and theoretical case study for the ‘coloring’ in polar intermetallics. Acta Crystallogr. Suppl.2016, A72, s253.10.1107/S2053273316096066Search in Google Scholar

[38] A. L. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem.1961, 17, 215.10.1016/0022-1902(61)80142-5Search in Google Scholar

[39] K. Yvon, W. Jeitschko, E. Parthé, Program Lazy-Pulverix. J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

[40] C. Belin, Synthesis and structure determination of the new compound RbGa7. Acta Crystallogr.1981, B37, 2060.10.1107/S0567740881007966Search in Google Scholar

[41] CCDC-1918761 to -1918795 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.Search in Google Scholar

[42] L. M. Gelato, E. Parthé, Structure Tidy: a computer program to standardize structure data. J. Appl. Crystallogr.1990, A46, 467.10.1107/S0021889887086965Search in Google Scholar

[43] G. M. Sheldrick, A short history of Shelx. Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar

[44] STOE & Cie GmbH, Darmstadt (Germany). X-Shape (version 1.03), Crystal Optimization for Numerical Absorption Correction, 2005.Search in Google Scholar

[45] M. Falk, C. Röhr, Simple and superstructure ternary indium variants of K2Ga3. Z. Kristallogr. Suppl.2018, 38, 87.Search in Google Scholar

[46] R. Neder, T. Proffen. DISCUS-Suite 5.31.0, 2019.Search in Google Scholar

[47] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz. Wien2k, An augmented plane wave and local orbital program for calculating crystal properties. TU Wien, Vienna (Austria) ISBN3-9501031-1-2, 2006.Search in Google Scholar

[48] J. P. Perdew, S. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar

[49] A. Kokalj, Program XCrySDen. J. Mol. Graph. Model.1999, 17, 176.10.1016/S1093-3263(99)00028-5Search in Google Scholar

[50] L. W. Finger, M. Kroeker, B. H. Toby, Drawxtl: an open-source computer program to produce crystal structure drawings. J. Appl. Crystallogr.2007, 40, 188.10.1107/S0021889806051557Search in Google Scholar

[51] R. W. F. Bader, Atoms in Molecules. A Quantum Theory. International Series of Monographs on Chemistry. Clarendon Press, Oxford, 1994.Search in Google Scholar

[52] A. O. de-la Roza, M. A. Blanco, A. Martá, A. M. Pendás, V. Luaña, Program Critic2 (Vers. 1.0). Comp. Phys. Commun.2009, 180, 157.10.1016/j.cpc.2008.07.018Search in Google Scholar

[53] A. O. de-la Roza, V. Luaña, A fast and accurate algorithm for QTAIM integrations in solids. J. Comp. Chem.2010, 32, 291.10.1002/jcc.21620Search in Google Scholar PubMed

[54] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr.1976, A32, 751.10.1107/S0567739476001551Search in Google Scholar

Received: 2019-05-29
Accepted: 2019-06-27
Published Online: 2019-07-29
Published in Print: 2019-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2019-0031/html
Scroll to top button