Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2020

Multistability and chaotic scenario in a quantum pair-ion plasma

  • Barsha Pradhan , Sayan Mukherjee , Asit Saha ORCID logo EMAIL logo , Hayder Natiq and Santo Banerjee

Abstract

Multistability and chaotic scenario of arbitrary amplitude ion-acoustic waves in a quantum plasma consisting of negative ions, positive ions and electrons are investigated. The normalized basic equations are transformed to a four dimensional conservative dynamical system by introducing a travelling wave variable. Stability of the fixed points for the corresponding linearized system is briefly examined. Chaotic and quasi-periodic features of the arbitrary amplitude ion-acoustic waves are discussed using effective tools, viz. phase orientations, time series graph and graphs of Lyapunov exponents. Multistability phenomena is established with the help of phase spaces, largest Lyapunov exponents and cross-section of basins of attraction. The chaotic phenomena is further verified by 0−1 test. Results of this study can be applied in understanding dynamical phenomena of arbitrary amplitude ion-acoustic waves in quantum pair-ion plasmas.


Corresponding author: Asit Saha, Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpo, East-Sikkim 737136, India, E-mail:

Funding source: Barsha Pradhan is highly obliged to SMU for TMA Pai Research Grant

Award Identifier / Grant number: 118/SMU/REG/UOO/104/2019

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Barsha Pradhan is highly obliged to SMU for TMA Pai Research Grant (Ref. No. 118/SMU/REG/UOO/104/2019).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. R. Miller and P. J. Wiita, Active Galactic Nuclei, Berlin, Springer, 1987, p. 202.10.1007/3-540-19492-4Search in Google Scholar

[2] M. C. Begelman, R. D. Blandford, and M. D. Rees, “Theory of extragalactic radio sources,” Rev. Mod. Phys., vol. 56, 1984, Art no. 255, https://doi.org/10.1103/revmodphys.56.255.Search in Google Scholar

[3] G. P. Zank, R. G. Greaves, Linear and nonlinear modes in nonrelativistic electron-positron plasmas, Phys. Rev. E, vol. 51, pp. 6079–6090, 1995, https://doi.org/10.1103/physreve.51.6079.Search in Google Scholar PubMed

[4] D. H. E. Dubin, “Electronic and positronic guiding-center drift ions,” Phys. Rev. Lett., vol. 92, 2004, Art. no. 195002, https://doi.org/10.1103/physrevlett.92.195002.Search in Google Scholar PubMed

[5] N. Akhtar and S. Hussain, “Ion acoustic shock waves in degenerate plasmas,” Phys. Plasmas, vol. 18, 2011, Art no. 072103, https://doi.org/10.1063/1.3601768.Search in Google Scholar

[6] B. Sahu, B. Pal, S. Poria, and R. Roychoudhury, “Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas,” J. Plasma Phys., vol. 81, 2015, Art no. 905810510, https://doi.org/10.1017/s0022377815000768.Search in Google Scholar

[7] D. Dutta, “Arbitrary amplitude solitary waves in an unmagnetized quantum pair-ion plasma,” Indian J. Phys., vol. 90, pp. 709–715, 2016, https://doi.org/10.1007/s12648-015-0792-7.Search in Google Scholar

[8] Y. Wang, Y. Dong, and B. Eliasson, “Dressed ion-acoustic solitary waves in quantum plasmas with two polarity ions and relativistic electron beams,” Phys. Lett. A, vol. 377, pp. 2604–2609, 2013, https://doi.org/10.1016/j.physleta.2013.08.025.Search in Google Scholar

[9] A. P. Misra and N. K. Ghosh, “Modulational instability of ion-acoustic wave packets in quantum pair-ion plasmas,” Astrophys. Space Sci., vol. 331, pp. 605–609, 2011, https://doi.org/10.1007/s10509-010-0472-1.Search in Google Scholar

[10] U. M. Abdelsalam, W. M. Moslem, and P. K. Shukla, “Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons,” Phys. Lett. A, vol. 372, pp. 4057–4061, 2008, https://doi.org/10.1016/j.physleta.2008.02.086.Search in Google Scholar

[11] N. A. Zedan, A. Atteya, W. F. El-Taibany, and S. K. EL-Labany, “Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field,” Waves Random Complex Media, 2020, https://doi.org/10.1080/17455030.2020.1798560.Search in Google Scholar

[12] S. Y. El-Monier and A. Atteya, “Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons,” Waves Random Complex Media, 2020, https://doi.org/10.1080/17455030.2020.1772522.Search in Google Scholar

[13] A. Atteya, M. A. El-Borie, G. D. Roston, and A. S. El-Helbawy, “Ion-acoustic gardner solitons and double layers in magnetized electron-positron-ion quantum plasma,” J. Taibah Univ. Sci., vol. 14, pp. 1182–1192, 2020, https://doi.org/10.1080/16583655.2020.1808358.Search in Google Scholar

[14] W. F. El-Taibany, N. A. Zedan, and A. Atteya, “Stability of three-dimensional dust acoustic waves in a strongly coupled dusty plasma including kappa distributed superthermal ions and electrons,” Eur. Phys. J. Plus, vol. 134, 2019, Art no. 479, https://doi.org/10.1140/epjp/i2019-12888-2.Search in Google Scholar

[15] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20, 1963, Art no. 130, https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2Search in Google Scholar

[16] A. P. Misra and P. K. Shukla, “Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations,” Phys. Rev. E, vol. 79, 2009, Art no. 056401, https://doi.org/10.1103/physreve.79.056401.Search in Google Scholar

[17] H. Zhen, B. Tian, Y. Wang, H. Zhong, and W. Sun, “Soliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma,” Phys. Plasmas, vol. 21, 2014, Art no. 073709, https://doi.org/10.1063/1.4885380.Search in Google Scholar

[18] Z. Rahim, M. Adnan, A. Qamar, and A. Saha, “Nonplanar dust-acoustic waves and chaotic motions in Thomas- Fermi dusty plasmas,” Phys. Plasmas, vol. 25, 2018, Art no. 08706, https://doi.org/10.1063/1.5016893.Search in Google Scholar

[19] A. Saha, B. Pradhan, and S. Banerjee, “Multistability and dynamical properties of ion-acoustic wave for the nonlinear Schrödinger equation in an electron–ion quantum plasma,” Phys. Scripta, vol. 95, 2020, Art no. 055602, https://doi.org/10.1088/1402-4896/ab7052.Search in Google Scholar

[20] F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, “Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q -switched gas laser,” Phys. Rev. Lett., vol. 49, 1982, Art no. 1217, https://doi.org/10.1103/physrevlett.49.1217.Search in Google Scholar

[21] C. Li and J. C. Sprott, “Multistability in the Lorenz system: a broken butterfly,” Int. J. Bifurc. Chaos, vol. 24, 2014, Art no. 1450131, https://doi.org/10.1142/s0218127414501314.Search in Google Scholar

[22] H. Natiq, M. R. M. Said, M. R. K. Ariffin, S. He, L. Rondoni, and S. Banerjee, “Self-excited and hidden attractors in a novel chaotic system with complicated multistability,” Eur. Phys. J. Plus, vol. 133, pp. 1–12, 2018, https://doi.org/10.1140/epjp/i2018-12360-y.Search in Google Scholar

[23] M. Wang, Y. Deng, X. Liao, Z. Li, M. Ma, and Y. Zeng, “Dynamics and circuit implementation of a four-wing memristive chaotic system with attractor rotation,” Int. J. Non Lin. Mech., vol. 111, 2019, Art no. 149, https://doi.org/10.1016/j.ijnonlinmec.2019.02.009.Search in Google Scholar

[24] C. Li and J. C. Sprott, “Coexisting hidden attractors in a 4-D simplified Lorenz system,” Int. J. Bifurc. Chaos, vol. 24, 2014, Art no. 1450034, https://doi.org/10.1142/s0218127414500345.Search in Google Scholar

[25] M. F. A. Rahim, H. Natiq, N. A. A. Fataf, and S. Banerjee, “Dynamics of a new hyperchaotic system and multistability,” Eur. Phys. J. Plus, vol. 134, 2019, Art no. 499.10.1140/epjp/i2019-13005-5Search in Google Scholar

[26] H. Natiq, S. Banerjee, M. R. K. Ariffin, and M. R. M. Said, “Can hyperchaotic maps with high complexity produce multistability?,” Chaos: Interdiscipl. J. Nonlinear Sci., vol. 29, 2019, Art no. 011103, https://doi.org/10.1063/1.5079886.Search in Google Scholar PubMed

[27] H. Sun, L. Ma, and L Wang, “Multistability as an indication of chaos in a discharge plasma,” Phys. Rev. E, vol. 51, 1995, Art no. 3475, https://doi.org/10.1103/physreve.51.3475.Search in Google Scholar PubMed

[28] J. Yong, W. Haida, and Y. Changxuan, “Multistability phenomena in a discharge plasma,” Chin. Phys. Lett., vol. 5, 1988, Art no. 200, https://doi.org/10.1088/0256-307x/5/5/003.Search in Google Scholar

[29] J. T. Seo, K. H. Pae, and S.J. Hahn, “Noise driven multistability in a plasma diode,” Phys. Plasmas, vol. 11, 2004, Art no. 5364, https://doi.org/10.1063/1.1804977.Search in Google Scholar

[30] S. J. Hahn and K. H. Pae, “Competing multistability in a plasma diode,” Phys. Plasmas, vol. 10, 2003, Art no. 314.10.1063/1.1527043Search in Google Scholar

[31] B. Yan, P. K. Prasad, S. Mukherjee, A. Saha, and S. Banerjee, “Dynamical complexity and multistability in a novel lunar wake plasma system,” Complexity, vol. 2020, 2020, Art no. 5428548, https://doi.org/10.1155/2020/5428548.Search in Google Scholar

[32] P. K. Prasad, A. Gowrishankar, A. Saha, and S. Banerjee, “Dynamical properties and fractal patterns of nonlinear waves in solar wind plasma,” Phys. Scripta, vol. 95, 2020, Art no. 6, https://doi.org/10.1088/1402-4896/ab833c.Search in Google Scholar

[33] A. Abdikian, J. Tamang, and A. Saha, “Electron-acoustic supernonlinear waves and their multistability in the framework of the nonlinear Schrödinger equation,” Commun. Theor. Phys., vol. 72, 2020, Art no. 075502, https://doi.org/10.1088/1572-9494/ab8a20.Search in Google Scholar

[34] A. Saha, B. Pradhan, and S. Bannerjee, “Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma,” Eur. J. Phys., vol. 135, 2020, Art no. 216, https://doi.org/10.1140/epjp/s13360-020-00235-9.Search in Google Scholar

[35] A. Saha, S. Sarkar, S. Banerjee, and K. K. Mondal, “Signature of chaos and multistability in a Thomas-Fermi plasma,” Eur. Phys. J. Spec. Top., vol. 229, pp. 979–988, 2020, https://doi.org/10.1140/epjst/e2020-900237-2.Search in Google Scholar

[36] C. Hens, S. K. Dana, and U. Feudel, “Extreme multistability: attractor manipulation and robustness,” Chaos, vol. 25, 2015, Art no. 053112, https://doi.org/10.1063/1.4921351.Search in Google Scholar PubMed

[37] M. Chen, M. X. Sun, B. C. Bao, H. G. Wu, Q. Xu, and J. Wang, “Controlling extreme multistability of memristor emulator-based dynamical circuit in fluxcharge domain,” Nonlinear Dynam., vol. 91, 2017, Art no. 139, https://doi.org/10.1007/s11071-017-3952-9.Search in Google Scholar

[38] S. Jafari, A. Ahmadi, S. Panahi, and K. Rajagopal, “Extreme multi-stability: when imperfection changes quality,” Chaos, Solit. Fractals, vol. 108, 2018, Art no. 182, https://doi.org/10.1016/j.chaos.2018.02.005.Search in Google Scholar

[39] C. B. Li, J. C. Sprott, W. Hu, and Y. Xu, “Infinite multistability in a self-reproducing chaotic system,” Int. J. Bifurcat. Chaos, vol. 27, 2017, Art no. 1750160, https://doi.org/10.1142/s0218127417501607.Search in Google Scholar

[40] U. K. Samanta, A. Saha, and P. Chatterjee, “Bifurcations of dust-ion-acoustic travelling waves in a magnetized quantum dusty plasma,” Astrophys. Space Sci., vol. 347, 2013, Art no. 293, https://doi.org/10.1007/s10509-013-1529-8.Search in Google Scholar

[41] B. Sahu, S. Poria, U. N. Ghosh, and R. Roychoudhury, “Quasi-periodic behavior of ion-acoustic solitary waves in electron-ion quantum plasma,” Phys. Plasmas, vol. 19, 2012, Art no. 052306, https://doi.org/10.1063/1.4714804.Search in Google Scholar

[42] P. K. Prasad, S. Sarkar, A. Saha, and K. K. Mondal, “Bifurcation analysis of ion-acoustic superperiodic waves in dense plasmas,” Braz. J. Phys., vol. 49, 2019, Art no. 698, https://doi.org/10.1007/s13538-019-00697-y.Search in Google Scholar

[43] G. A. Gottwald and I. Melbourne, “A new test for chaos in deterministic systems,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., vol. 460, pp. 603–611, 2004, https://doi.org/10.1098/rspa.2003.1183.Search in Google Scholar

[44] G. A. Gottwald and I. Melbourne, “Comment on ”reliability of the 0–1 test for chaos,” Phys. Rev. E, vol. 77, 2008, Art no. 028201, https://doi.org/10.1103/physreve.77.028201.Search in Google Scholar

[45] D. Bohm and D. Pines, “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas,” Phys. Rev. E, vol. 92, 1953, Art no. 609, https://doi.org/10.1103/physrev.92.609.Search in Google Scholar

[46] D. A. Kirzhnitz, “The limits of applicability of quasi-classical equation of state of matter,” Sov. Phys. - JETP, vol. 35, 1959, Art no. 1081.Search in Google Scholar

[47] A. Holas, P. M. Kozlowski, and N. H. March, “Kinetic energy density and Pauli potential: dimensionality dependence, gradient expansions and non-locality,” J. Phys. Math. Gen., vol. 24, 1991, Art no. 4249, https://doi.org/10.1088/0305-4470/24/18/013.Search in Google Scholar

[48] L. Salasnich, “Kirzhnits gradient expansion for a D-dimensional Fermi gas,” J. Phys. A: Math. Theor., vol. 40, 2007, Art no. 9987, https://doi.org/10.1088/1751-8113/40/33/004.Search in Google Scholar

[49] D. Michta, F. Graziani, and M. Bonitz, “Quantum hydrodynamics for plasmas – a Thomas-Fermi theory perspective,” Contrib. Plasma Phys., vol. 55, pp. 437–443, 2015, https://doi.org/10.1002/ctpp.201500024.Search in Google Scholar

[50] F. Haas, “Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy,” Phys. Rev. E, vol. 92, 2015, Art no. 053112, https://doi.org/10.1103/physreve.92.053112.Search in Google Scholar

[51] M. Akbari-Moghanjoughi, “Hydrodynamic limit of Wigner-Poisson kinetic theory: revisited,” Phys. Plasmas, vol. 22, 2015, Art no. 022103, https://doi.org/10.1063/1.4907167.Search in Google Scholar

[52] Z. A. Moldabekov, M. Bonitz, and T. S. Ramazanov, “Gradient correction and Bohm potential for two- and one-dimensional electron gases at a finite temperature,” Contrib. Plasma Phys., vol. 57, 2017, Art no. 499, https://doi.org/10.1002/ctpp.201700113.Search in Google Scholar

[53] Z. A. Moldabekov, M. Bonitz, and T. S. Ramazanov, “Theoretical foundations of quantum hydrodynamics for plasmas,” Phys. Plasmas, vol. 25, 2018, Art no. 031903, https://doi.org/10.1063/1.5003910.Search in Google Scholar

[54] M. Bonitz, Z. A. Moldabekov, and T. S. Ramazanov, “Quantum hydrodynamics for plasmas-Quo vadis?,” Phys. Plasmas, vol. 26, 2019, Art no. 090601, https://doi.org/10.1063/1.5097885.Search in Google Scholar

Received: 2020-08-09
Accepted: 2020-10-26
Published Online: 2020-11-16
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2020-0224/html
Scroll to top button