Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 21, 2021

Identification of thermo optical parameters in 4l-hexyloxy-4-cyanobyphenyl with dispersed ZnO nano particles

  • Pokkunuri Pardhasaradhi ORCID logo EMAIL logo , Boddapati Taraka Phani Madhav , Gandu Srilekha , Manepalli Ramakrishna Nanchara Rao and Gorla Venkata Ganesh

Abstract

In this present article, synthesis, characterization, and study of optical parameters through image enhancement methods have been carried out on 4l-hexyloxy-4-cyanobyphenyl (6OCB) pure liquid crystal (LC) and 6OCB with dispersion of 0.5 wt% ZnO nanoparticles. Textural determinations of the synthesized compounds are recorded by using SDTECHS POM connected with a hot stage and camera. differential scanning calorimetry (DSC) is used to measure enthalpy and transition temperature values. The results show that the dispersion of ZnO in 6OCB exhibits nematic phase as same as the pure 6OCB with slightly reduced clearing temperature as expected. Further characterization is carried out by various spectroscopic techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV–Vis) spectroscopy. To evaluate and identify the behavior of optical parameters viz optical transmittance (OT), absorption coefficient (AC), and phase retardation (PR) as a function of temperature, an image processing method has been proposed, i.e. illumination enhancement algorithm (IEA) using MATLAB software. The proposed enhancement algorithm is one of the simplest and efficient algorithms to evaluate the thermo optical parameters for various electro optical applications. The results are compared with the body of the data available.


Corresponding author: Pokkunuri Pardhasaradhi, Antennas and Liquid Crystals Research Center, Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: DST through Fund for Improvement of S&T Infrastructure (FIST) grant of SR/FST/ET-II/2019/450 and KLEF Internal funding project File no. KLEF/IF/SEP/2019/ 002.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. V. Rao, P. Pardhasaradhi, V. G. K. M. Pisipati, and P. V. D. Prasad, “Orientational order parameter studies on 3.O m and 3O.O m liquid crystals,” Phase Transitions, vol. 88, no. 2, pp. 137–152, 2015. https://doi.org/10.1080/01411594.2014.961154.Search in Google Scholar

[2] P. S. Sastry, C. Srinivasu, P. Pardhasaradhi, and V. G. K. M. Pisipati, “Orientational order parameter, S, in N -(p - N -ethoxy benzylidene)- p - N -alkoxy anilines, 2O.Om LC compounds,” Phase Transitions, vol. 89, no. 1, pp. 37–51, 2016. https://doi.org/10.1080/01411594.2015.1071368.Search in Google Scholar

[3] P. S. Sastry, P. Pardhasaradhi, C. Srinivasu, V. G. K. M. Pisipati, and P. V. Datta Prasad, “Synthesis, characterisation and phase transition studies in N-(-4-ethyloxybenzylydene)-4’-alkoxyanilines,” Liq. Cryst., vol. 43, no. 5, pp. 632–638, 2016. https://doi.org/10.1080/02678292.2015.1131342.Search in Google Scholar

[4] G. Srilekha, B. T. P. Madhav, M. Sujatha, P. Pardhasaradhi, R. K. N. R. Manepalli, and M. C. Rao, “AR-ESIHE and ARS-ESIHE-based image enhancement methods on 9oba pure and nano dispersed liquid crystalline compound,” Mol. Cryst. Liq. Cryst., vol. 702, no. 1, pp. 1–20, 2020. https://doi.org/10.1080/15421406.2020.1724459.Search in Google Scholar

[5] G. Srilekha, P. Pardhasaradhi, B. T. P. Madhav, R. K. N. R. Manepalli, and M. C. Rao, “Design and analysis of 6CB nematic liquid crystal-based rectangular patch antenna for S-band and C-band applications,” Z. Naturforsch. A, vol. 75, no. 10, pp. 863–875, 2020. https://doi.org/10.1515/zna-2020-0144.Search in Google Scholar

[6] M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, M. C. Rao, N. Krishna Mohan, and R. K. N. R. Manepalli, “Spectroscopic studies on liquid crystalline n-hexyloxy-cyanobiphenyl with dispersed citrate-capped gold nanoparticles in visible region,” Liq. Cryst., vol. 47, no. 6, pp. 918–938, 2020. https://doi.org/10.1080/02678292.2019.1688874.Search in Google Scholar

[7] P. Jayaprada, M. C. Rao, P. Pardhasaradhi, P. V. Datta Prasad, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Optical studies of n-octyloxy-cyanobiphenyl (8ocb) with dispersed ZnO nanoparticles for display device application,” Optik (Stuttg)., vol. 185, no. April, pp. 1226–1237, 2019. https://doi.org/10.1016/j.ijleo.2019.04.060.Search in Google Scholar

[8] E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z. Raszewski, et al.., “Liquid crystal cell for space-borne laser rangefinder to space mission applications,” Opto-Electron. Rev., vol. 20, no. 4, pp. 315–322, 2012. https://doi.org/10.2478/s11772-012-0045-7.Search in Google Scholar

[9] C. Y. Chang, K. W. Ho, C. S. Hsu, C. H. Lin, S. Gauza, and S. T. Wu, “Synthesis and mesomorphic properties of α-methylstilbene-based liquid crystals,” Liq. Cryst., vol. 36, no. 4, pp. 425–433, 2009. https://doi.org/10.1080/02678290902927536.Search in Google Scholar

[10] A. Khare, R. Uttam, S. Kumar, and R. Dhar, “Enhanced charge carrier conduction and other characteristic parameters of hexagonal plastic columnar phase of a discotic liquid crystalline material due to functionalized gold nanoparticles,” J. Mol. Liq., vol. 317, p. 113985, 2020.10.1016/j.molliq.2020.113985Search in Google Scholar

[11] M. Bugakov, S. Abdullaeva, P. Samokhvalov, S. Abramchuk, V. Shibaev, and N. Boiko, “Hybrid fluorescent liquid crystalline composites: directed assembly of quantum dots in liquid crystalline block copolymer matrices,” RSC Adv., vol. 10, no. 26, pp. 15264–15273, 2020.10.1039/D0RA02442BSearch in Google Scholar

[12] M. Chemingui, U. B. Singh, N. Yadav, R. S. Dabrowski, and R. Dhar, “Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material,” J. Mol. Liq., vol. 319, p. 114299, 2020.10.1016/j.molliq.2020.114299Search in Google Scholar

[13] H. M. Hajer Elkhalgi, S. Khandka, N. Yadav, R. Dhar, and R. Dabrowski, “Effects of manganese (II) titanium oxide nano particles on the physical properties of a room temperature nematic liquid crystal 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzene,” J. Mol. Liq., vol. 268, pp. 223–228, 2018.10.1016/j.molliq.2018.07.044Search in Google Scholar

[14] N. Yadav, D. Roman, and R. Dhar, “Effect of alumina nanoparticles on dielectric permittivity, electrical conductivity, director relaxation frequency, threshold and switching voltages of a nematic liquid crystalline material,” Liq. Cryst., vol. 41, no. 12, pp. 1803–1810, 2014.10.1080/02678292.2014.950619Search in Google Scholar

[15] R. Uttam, S. Kumar, and R. Dhar, “Magnified charge carrier conduction, permittivity, and mesomorphic properties of columnar structure of a room temperature discotic liquid crystalline material due to the dispersion of low concentration ferroelectric nanoparticles,” Phys. Rev. E, vol. 102, no. 5, p. 052702, 2020.10.1103/PhysRevE.102.052702Search in Google Scholar PubMed

[16] A. Sharma, P. Malik, R. Dhar, and P. Kumar, “Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture,” Bull. Mater. Sci., vol. 42, no. 5, pp. 1–9, 2019.10.1007/s12034-019-1902-5Search in Google Scholar

[17] B. T. P. Madhav, P. Pardhasaradhi, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Histogram equalisation technique to analyse induced cholesteric phase in nanodoped liquid crystalline compound,” Liq. Cryst., vol. 42, no. 7, pp. 989–997, 2015. https://doi.org/10.1080/02678292.2015.1012752.Search in Google Scholar

[18] P. Pardhasaradhi, B. T. P. Madhav, M. V. Rao, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds,” Phase Transitions, vol. 89, no. 9, pp. 902–909, 2016. https://doi.org/10.1080/01411594.2015.1091074.Search in Google Scholar

[19] B. T. P. Madhav, P. Pardhasaradhi, P. V. V. Kishore, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Image enhancement of nano-dispersed N-(p-n-decyloxybenzylidene)-p-n-hexyloxy aniline using combined unsharp masking,” Liq. Cryst. Today, vol. 25, no. 4, pp. 74–80, 2016. https://doi.org/10.1080/1358314X.2016.1242252.Search in Google Scholar

[20] X. Guo, Y. Li, and H. Ling, “LIME: low-light image enhancement via illumination map estimation,” IEEE Trans. Image Process., vol. 26, no. 2, pp. 982–993, 2017. https://doi.org/10.1109/TIP.2016.2639450.Search in Google Scholar

[21] D. Andrienko, “Introduction to liquid crystals,” J. Mol. Liq., vol. 267, pp. 520–541, 2018. https://doi.org/10.1016/j.molliq.2018.01.175.Search in Google Scholar

[22] J. I. Goldstein, D. E. Newbury, P. Echlin, et al.., “Coating and conductivity techniques for SEM and microanalysis,” in Scanning Electron Microsc. X-Ray Microanal., 2nd ed. New York, Plenum Press, 1992, pp. 671–740.10.1007/978-1-4613-0491-3_13Search in Google Scholar

[23] A. Łoza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digit. Signal Process., vol. 23, no. 6, pp. 1856–1866, 2013. https://doi.org/10.1016/j.dsp.2013.06.002.Search in Google Scholar

[24] D. Chen, J. M. Mirebeau, and L. D. Cohen, “Finsler geodesics evolution model for region based active contours,” in Br. Mach. Vis. Conf. 2016, BMVC 2016, vol. 2016-September, 2016, pp. 22.1–22.12.10.5244/C.30.22Search in Google Scholar

[25] C. Florea and L. Florea, “Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions,” Int. J. Appl. Math. Comput. Sci., vol. 23, no. 3, pp. 637–648, 2013. https://doi.org/10.2478/amcs-2013-0048.Search in Google Scholar

[26] M. J. Fischer and D. Vaughan, “The beta-hyperbolic secant distribution,” Aust. J. Stat., vol. 39, no. 3, pp. 245–258, 2016. https://doi.org/10.17713/ajs.v39i3.247.Search in Google Scholar

[27] H. Liu, B. Li, X. Lv, and Y. Huang, “Image retrieval using fused deep convolutional features,” Procedia Comput. Sci. vol. 107, no. Icict, pp. 749–754, 2017. https://doi.org/10.1016/j.procs.2017.03.159.Search in Google Scholar

[28] S. Wang, J. Zheng, H. M. Hu, and B. Li, “Naturalness preserved enhancement algorithm for non-uniform illumination images,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3538–3548, 2013. https://doi.org/10.1109/TIP.2013.2261309.Search in Google Scholar

[29] A. O. Daoud, A. A. Tsehayae, and A. R. Fayek, “A guided evaluation of the impact of research and development partnerships on university, industry, and government,” Can. J. Civ. Eng., vol. 44, no. 4, pp. 253–263, 2017. https://doi.org/10.1139/cjce-2016-0381.Search in Google Scholar

[30] S. S. Sastry, K. L. Sarada, K. Mallika, L. T. Kumar, and H. S. Tiong, “Determination of thermo optical parameters using image analysis technique in nBA: 7HB hydrogen bonded liquid crystals,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 01, pp. 18470–18479, 2015. https://doi.org/10.15680/ijirset.2015.0401010.Search in Google Scholar

[31] R. Manohar, A. K. Srivastava, J. P. S. A. K. Prajapati, and N. L. Bonde, “Dielectric, optical and thermodynamical properties of liquid crystal sample exhibiting SmA phase,” Int. J. Phys. Sci., vol. 1, no. 3, pp. 147–153, 2006.Search in Google Scholar

[32] N. Avci, A. Nesrullajev, and Ş. Oktik, “Nonlinear thermotropic and thermo-optical behaviour of planar oriented textures in nematic liquid crystals at phase transitions,” Braz. J. Phys., vol. 40, no. 2, pp. 224–227, 2010. https://doi.org/10.1590/S0103-97332010000200017.Search in Google Scholar

Received: 2021-02-19
Revised: 2021-06-30
Accepted: 2021-07-01
Published Online: 2021-07-21
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2021-0046/html
Scroll to top button