Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 27, 2017

Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7

  • Kai Volgmann EMAIL logo , Vanessa Werth , Suliman Nakhal , Martin Lerch , Thomas Bredow and Paul Heitjans EMAIL logo

Abstract

Ti-based materials exhibit suitable properties for usage in secondary Li- and Na-ion batteries and were in the focus of several electrochemical and ion conductivity studies. A material of such interest is layer-structured, monoclinic Na2Ti3O7. Additionally, the sodium in Na2Ti3O7 can be replaced completely with lithium to achieve monoclinic Li2Ti3O7, whose electrochemical properties were already investigated as well. Both materials exhibit interesting properties such as zero-strain behavior upon intercalation and high cycling stability. However, there is still a lack of fundamental understanding of the ion diffusivity of both Na and Li in the corresponding host structure. Solid-state nuclear magnetic resonance (NMR) spectroscopy is used here for the first time to reveal the cation dynamics in layered Na2Ti3O7 and Li2Ti3O7. This includes activation energies for the ionic motion and jump rates on the microscopic scale from NMR spin-lattice relaxation (SLR), spin-alignment echo (SAE), and 2D NMR exchange techniques. Moreover, the dimensionality of the ionic motion is investigated by frequency-dependent NMR SLR. Structural details are studied using magic-angle spinning (MAS) NMR spectroscopy. Results for the electric field gradient at the Na and Li site, respectively, are compared with those from theoretical calculations performed within this study. The dynamics are similar for both cations, and the frequency-dependence of the 7Li NMR SLR rate indicates Li motion confined to two dimensions. Thus, these two materials may be regarded a model system for low-dimensional diffusion of two different cations.

Acknowledgement

We thank Prof. Feldhoff for access to the scanning electron microscope and Dr. Licht for carrying out the measurements at the SEM. Financial support by the DFG in the frame of the Research Unit FOR 1277 (molife) is gratefully acknowledged.

References

1. Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 192 (2009) 588.10.1016/j.jpowsour.2009.02.038Search in Google Scholar

2. G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci. 5 (2012) 6652.10.1039/c2ee03410gSearch in Google Scholar

3. W. Küchler, P. Heitjans, A. Payer, R. Schöllhorn, Solid State Ionics 70–71 (1994) 434.10.1016/0167-2738(94)90350-6Search in Google Scholar

4. R. Winter, P. Heitjans, J. Non-Cryst. Solids 293–295 (2001) 19.10.1016/S0022-3093(01)00640-8Search in Google Scholar

5. R. Winter, P. Heitjans, J. Phys. Chem. B 105 (2001) 6108.10.1021/jp011200fSearch in Google Scholar

6. T. Bredow, P. Heitjans, M. Wilkening, Phys. Rev. B 70 (2004) 115111.10.1103/PhysRevB.70.115111Search in Google Scholar

7. M. Wilkening, P. Heitjans, Phys. Rev. B 77 (2008) 24311.10.1103/PhysRevB.77.024311Search in Google Scholar

8. M. M. Islam, T. Bredow, Z. Phys. Chem. 229 (2015) 1265.10.1515/zpch-2014-0663Search in Google Scholar

9. R. Knobel, H. Behrens, N. I. Schwarzburger, M. Binnewies, I. Horn, Z. Phys. Chem. 229 (2015) 1289.10.1515/zpch-2014-0662Search in Google Scholar

10. D. Wiedemann, M. M. Islam, S. Nakhal, A. Senyshyn, T. Bredow, M. Lerch, J. Phys. Chem. C 119 (2015) 11370.10.1021/acs.jpcc.5b01166Search in Google Scholar

11. C. V. Chandran, P. Heitjans, in: G. A. Webb (Ed.): Annual reports on NMR spectroscopy, Academic Press, Amsterdam (2016), P. 1.10.1016/bs.arnmr.2016.03.001Search in Google Scholar

12. M. Wilkening, W. Iwaniak, J. Heine, V. Epp, A. Kleinert, M. Behrens, G. Nuspl, W. Bensch, P. Heitjans, Phys. Chem. Chem. Phys. 9 (2007) 6199.10.1039/b713311aSearch in Google Scholar

13. M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Phys. Chem. Chem. Phys. 9 (2007) 1239.10.1039/B616269JSearch in Google Scholar

14. M. Wilkening, J. Heine, C. Lyness, A. Armstrong, P. Bruce, Phys. Rev. B 80 (2009).10.1103/PhysRevB.80.064302Search in Google Scholar

15. W. Iwaniak, J. Fritzsche, M. Zukalová, R. Winter, M. Wilkening, P. Heitjans, Def. Diff. Forum 289–292 (2009) 595.10.4028/www.scientific.net/DDF.289-292.565Search in Google Scholar

16. L. Wu, D. Buchholz, D. Bresser, L. Gomes Chagas, S. Passerini, J Power Sources 251 (2014) 379.10.1016/j.jpowsour.2013.11.083Search in Google Scholar

17. W. Schmidt, P. Bottke, M. Sternad, P. Gollob, V. Hennige, M. Wilkening, Chem. Mater. 27 (2015) 1740.10.1021/cm504564kSearch in Google Scholar

18. S. Kikkawa, F. Yasuda, M. Koizumi, Mater. Res. Bull. 20 (1985) 1221.10.1016/0025-5408(85)90096-0Search in Google Scholar

19. A.-L. Sauvet, S. Baliteau, C. Lopez, P. Fabry, J. Solid State Chem. 177 (2004) 4508.10.1016/j.jssc.2004.09.008Search in Google Scholar

20. M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier, W. Sitte, J. Chem. Thermodyn. 35 (2003) 1469.10.1016/S0021-9614(03)00125-3Search in Google Scholar

21. Y. An, Z. Li, H. Xiang, Y. Huang, J. Shen, Centr. Eur. J. Phys. 9 (2011) 1488.Search in Google Scholar

22. K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, J. Akimoto, Solid State Ionics 178 (2008) 1725.10.1016/j.ssi.2007.11.004Search in Google Scholar

23. A. Kuhn, M. Kunze, P. Sreeraj, H. D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42 (2012) 2.10.1016/j.ssnmr.2012.02.001Search in Google Scholar PubMed

24. M. Wilkening, P. Heitjans, Chem. Phys. Chem. 13 (2012) 53.10.1002/cphc.201100580Search in Google Scholar

25. P. Heitjans, S. Indris, M. Wilkening, Diffus. Fundam. 2 (2005) 1.Search in Google Scholar

26. P. Heitjans, J. Kärger (Eds.): Diffusion in condensed matter: methods, materials, models, Springer, Berlin and New York (2005).10.1007/3-540-30970-5Search in Google Scholar

27. S. Andersson, A. D. Wadsley, Acta Crystallogr. 14 (1961) 1245.10.1107/S0365110X61003636Search in Google Scholar

28. M. Catti, I. Pinus, A. Scherillo, J. Solid State Chem. 205 (2013) 64.10.1016/j.jssc.2013.07.003Search in Google Scholar

29. G. Bergerhoff, I. D. Brown, in: F. H. Allen (Ed.): Crystallographic databases: information content, software systems, scientific applications, Int. Union of Crystallography, Chester (1987), P. 77.Search in Google Scholar

30. J. Rodríguez-Carvajal, Physica B Condensed Matter 192 (1993) 55.10.1016/0921-4526(93)90108-ISearch in Google Scholar

31. K. Brandenburg, H. Putz, Diamond – crystal and molecular structure visualization, crystal impact – Dr. H. Putz and Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany (2014).Search in Google Scholar

32. K. R. Thruber, R. Tycko, J. Magn. Res. 196 (2009) 84.10.1016/j.jmr.2008.09.019Search in Google Scholar PubMed PubMed Central

33. E. Fukushima, Roeder, Stephen B. W, Experimental pulse NMR: a nuts and bolts approach, Addison-Wesley Pub. Co., Advanced Book Program, Reading, Mass (1981).Search in Google Scholar

34. D. Ailion, C. P. Slichter, Phys. Rev. Lett. 12 (1964) 168.10.1103/PhysRevLett.12.168Search in Google Scholar

35. D. Ailion, C. P. Slichter, Phys. Rev. 137 (1965) A235.10.1103/PhysRev.137.A235Search in Google Scholar

36. D. Wolf, Phys. Rev. B 10 (1974) 2710.10.1103/PhysRevB.10.2710Search in Google Scholar

37. R. Böhmer, J. Magn. Res. 147 (2000) 78.10.1006/jmre.2000.2162Search in Google Scholar PubMed

38. R. Böhmer, T. Jörg, F. Qi, A. Titze, Chem. Phys. Lett. 316 (2000) 419.10.1016/S0009-2614(99)01297-XSearch in Google Scholar

39. F. Qi, T. Jörg, R. Böhmer, Solid State Nucl. Magn. Reson. 22 (2002) 484.10.1006/snmr.2002.0073Search in Google Scholar

40. J. Jeener, P. Broekaert, Phys. Rev. 157 (1967) 232.10.1103/PhysRev.157.232Search in Google Scholar

41. X.-P. Tang, R. Busch, W.L. Johnson, Y. Wu, Phys. Rev. Lett. 81 (1998) 5358.10.1103/PhysRevLett.81.5358Search in Google Scholar

42. M. Wilkening, P. Heitjans, J. Phys. Condens. Matter 18 (2006) 9849.10.1088/0953-8984/18/43/007Search in Google Scholar

43. M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, Wiley, Chichester, UK (2008).Search in Google Scholar

44. D. Marion, M. Ikura, R. Tschudin, A. Bax, J. Magn. Res. 85 (1989) 393.10.1016/0022-2364(89)90152-2Search in Google Scholar

45. G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.10.1103/PhysRevB.47.558Search in Google Scholar

46. G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.10.1103/PhysRevB.49.14251Search in Google Scholar

47. G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6 (1996) 15.10.1016/0927-0256(96)00008-0Search in Google Scholar

48. G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.10.1103/PhysRevB.54.11169Search in Google Scholar PubMed

49. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

50. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.10.1103/PhysRevLett.78.1396Search in Google Scholar

51. P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.10.1103/PhysRevB.50.17953Search in Google Scholar

52. G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.10.1103/PhysRevB.59.1758Search in Google Scholar

53. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.10.1103/PhysRevB.13.5188Search in Google Scholar

54. O. V. Yakubovich, V. V. Kireev, Crystallogr. Rep. 48 (2003) 24.10.1134/1.1541737Search in Google Scholar

55. M. C. Morris, Standard x-ray diffraction powder patterns, U.S. Dept. of the Commerce, National Bureau of Standards; G.P.O., Washington, D.C. (1979).10.6028/NBS.MONO.25-16Search in Google Scholar

56. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70.10.1002/mrc.984Search in Google Scholar

57. J. Langer, V. Epp, P. Heitjans, F. A. Mautner, M. Wilkening, Phys. Rev. B 88 (2013) 94304.10.1103/PhysRevB.88.094304Search in Google Scholar

58. J. van Kranendonk, Physica 20 (1954) 781.10.1016/S0031-8914(54)80191-1Search in Google Scholar

59. G. Eriksson, A. D. Pelton, MTB 24 (1993) 795.10.1007/BF02663140Search in Google Scholar

60. P. Pyykkö, Mol. Phys. 106 (2008) 1965.10.1080/00268970802018367Search in Google Scholar

61. J. P. Yesinowski, J. Magn. Res. 252 (2015) 135.10.1016/j.jmr.2014.12.012Search in Google Scholar PubMed

62. J. Hendrickson, P. Bray, J. Magn. Res. 9 (1973) 341.10.1016/0022-2364(73)90176-5Search in Google Scholar

63. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 73 (1948) 679.10.1103/PhysRev.73.679Search in Google Scholar

64. P. M. Richards, in: M. B. Salamon (Ed.): Physics of superionic conductors, Springer, Berlin Heidelberg (1979), P. 141.10.1007/978-3-642-81328-3_6Search in Google Scholar

Received: 2016-12-7
Accepted: 2017-1-15
Published Online: 2017-3-27
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2016-0948/html
Scroll to top button