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COMPUTATION OF THIN-WALLED CROSS-SECTION
RESISTANCE TO LOCAL BUCKLING WITH THE USE
OF THE CRITICAL PLATE METHOD

A. SZYCHOWSKI!

Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-
section resistance of which is affected by the phenomena of local or distortional stability loss. This results from
the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of
calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability
of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section
component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled,
depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining
plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc.
the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical
resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to
determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking
into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM)
was presented in the examples. Analytical calculation results were compared with selected experimental findings.
It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results

in a more accurate representation of thin-walled element behaviour in the engineering computational model.
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1. INTRODUCTION

Metal thin-walled members with Class 4 cross-sections are susceptible to different modes of
instability, namely local, distortional, and overall buckling. Each of these modes is characterised by
a different form of displacement and different half-wavelengths of buckling. The critical length of
local buckling is of the order of cross-sectional dimensions (I,* = b), the length of distortional
buckling is, on average, one order of magnitude higher (e.g. I.” = 7-11b), and the length of overall
(flexural, flexural-torsional or lateral-torsional) buckling is of the order of the member span, or of
the distance between restraints (/,° = /). The cross section of thin-walled members of this class is
usually composed of slender-plate elements (thin walls) which can be directly modelled as plates.
According to the currently binding Eurocode 3 [50], the phenomena of local and distortional
buckling, despite differences in buckling lengths, are accounted for by means of reduction in cross-
section resistance. The method of effective width (for local buckling) and reduced thickness (for
distortional buckling) is used. On the other hand, the overall stability loss is addressed by a
reduction factor calculated on the basis of the non-dimensional slenderness of the member. To
estimate effective widths, the local buckling critical stress is determined for individual plates on the
assumption that they are simply supported. Furthermore, the influence of possible longitudinal
stress variation is disregarded. The effective width of the flange, on the side of potential stiffening
of the free edge, is also indirectly used to estimate distortional buckling critical stress. On this basis,
the effective thickness of the stiffener is determined. Such a computational model was adopted in
the code [50]. When both phenomena have been accounted for, the effective cross-section
(composed of appropriate effective widths and reduced thicknesses) is obtained. It is used to
compute appropriate characteristics of the cross-section (Aes, Wepy).

In view of the above, it is a matter of crucial importance to correctly determine the local buckling
critical stress. It provides a basis for determining: 1) effective widths of individual plates, 2)
distortional buckling critical stress (the substitute cross-section of the stiffener consists of
appropriate effective widths), and 3) the overall non-dimensional slenderness of the member.

This study presents the method for determining the local buckling critical stress and the design
ultimate resistance of thin-walled cross-section, in which a more accurate computational model is
employed. This means taking into account the effect of the mutual elastic restraint of component

plates and the influence of longitudinal stress variation.
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2. CONCEPTS OF TAKING THE EFFECT OF LOCAL BUCKLING INTO

ACCOUNT

The concept of separating plate elements, assuming they are simply supported on longitudinal edges
of connections, was adopted in the codes [49,50,51] on the design of thin-walled members with
Class 4 cross-section. The critical stress is determined individually for plates separated in this
manner. In this approach, the “local” critical resistance of the thin-walled section, determined from
the condition of local buckling, depends on the critical stress of the weakest plate. After relative
slenderness of individual plates (thin walls) has been determined, appropriate effective widths are
determined, which are then “combined” to form the effective cross-section of the thin-walled
member. Such an approach is different from that applied to distortional buckling [50]. In the
computational model of the latter phenomenon, it is assumed that rotational spring stiffeners are
found at the junction of the edge-stiffened flange and the web. In section 5.3 (Table 5.2.), the code
[50] allows modelling thin walls with rotational and translational spring stiffeners, yet solutions
concerning local buckling are not given at all. In this respect, the code [50] recommends the design
engineer should rely on the computational model acc. code [51], which is equivalent to the adoption
of the concept of separating simply supported plates.

Theoretical investigations into whole cross-sections, ¢.g.[1,8,9,10,19], computations with the Finite
Element Method (FEM), e.g.[6,47], or Finite Strip Method (FSM), e.2.[20,28], and experimental
investigations, e.g.[2,11,15,21,25,26], indicate that the influence of adjacent plates occurs. In an
actual thin-walled cross-section, e.g. a cold-formed one, the phenomenon of elastic restraint of
adjacent plates is found in local buckling. This issue has been raised by many researchers.

A hypothesis can be formulated that the weakest plate is decisive for the local buckling of the cross-
section under different load states. This plate is elastically restrained against rotation at the stronger,
neighbouring plate. Additionally, elastic restraint stiffeners are found on the longitudinal edges of
the plate connection. Consequently, in thin-walled members made from flat thin walls, the weakest
plate, termed the “critical plate” (CP), is elastically restrained against rotation in the stronger,
restraining plate, labelled as RP. Buckled CP causes RP deflection because in their rigid connection
on the common edge, the condition of continuity of displacements (rotation angles) and forces
(moments) is maintained. As a result, an impression is produced that all cross-section plates buckle
at the same time, but CP deflections in moderate post-buckling are, on average, an order of

magnitude greater than forced deflections of RP [15,31].
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It is obvious that in some sections, under specified load conditions, neighbouring plate elements do
not provide elastic restraint to each other because they buckle at almost the same time. The box
section in axial compression for # = b and # = #,, or in bending about the major axis for #=2.44b
and #r = t, provides an example of such a situation. Further on in this study, cross-sections of this
type are termed “zero cross-sections”, and only in those cases, the code assumption on simple
support of component plates on connection edges is satisfied. In the majority of cases, however, a
CP can be identified in the thin-walled member, which is decisive for the local buckling of this
cross-section under a specific stress state.

Technical literature offers a very large number of solutions to different problems of stability of thin
plates loaded in their planes. The solutions were obtained using different methods, e.g. the energy
method. In the majority of cases, those solutions concern plates that are under axial or eccentric
compression or shear, at constant stress intensity along the length, e.g. [1,43]. A number of
problems related to the stability of a segment of thin-walled bar composed of plates and separated
by the buckling nodal lines have also been solved [1,8,9,19,24]. An extensive survey of results was
presented in study [48].

However, the studies on plate stability, which also account for the conditions of the edge elastic
restraint and longitudinal stress variation are not readily available. In a few papers, the plate elastic
restraint was considered, but that was done for constant stress intensity along the plate length [1].
Alternatively, longitudinal stress variation was taken into account but that concerned simply
supported plates [1,13,14,45,46]. The issues of simultaneous occurrence of elastic restraint of the
plate edge and longitudinal stress variation have been in the scope of interest of the author of this
study. These activities have produced a series of papers devoted to those problems [31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42]. The results obtained make it possible to develop more accurate
computational methods, in which the actual behaviour of thin-walled members under load is
rendered more realistically.

Computer methods (FEM, FSM) are also successfully applied to determine the critical load on the
thin-walled member. In those methods, the critical load and the mode of the cross-section buckling
are obtained. However, it is not unambiguously indicated which plate is decisive for local buckling.
The results thus produced can be applied, e.g. to the direct resistance determination with the use of
the Direct Strength Method (DSM) [29,30,52]. Study [25], however, demonstrated that DSM could
not be a universal method in thin-walled member design. For instance, the method does not account

for the disadvantageous effect of the shift of the effective cross-section centre of gravity when
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compared with its position for the gross cross-section. That refers to, e.g. monosymmetric and non-
symmetric cross-sections under compression. Conversely, in the effective width method, it is
necessary to determine the critical stress for individual elements because the determination of the
slenderness of “stronger plates” on the basis of the critical stress calculated for the whole cross-
section (in which “weaker plates” are decisive) leads to cross-section resistance underestimation.
Additionally, using FEM, design engineers have to model a given problem individually every time,
taking into account many aspects of the actual thin-walled member behaviour. The issues that need
to be addressed include, among others, a proper selection of finite elements, the manner of mesh
generation, the way the load is applied, and appropriate modelling of actual support conditions.
Surely, FEM nonlinear analysis can be applied to investigate thin-walled member behaviour in a
post-buckling state, and in failure. However, developing approximate methods (the ones worked out
by hand, or in the form of spreadsheets) of the resistance assessment allows, among others,
production of preliminary design and a simple validation of computations made with the use of
FEM or FSM.

In the monograph [16], it was shown that an increase in stress in the thin-walled cross-section above
the critical stress of the weakest element (CP) results in a quick growth of the element deflection.
Also, at first, the stronger element (RP) shows a slow deflection increment, and it behaves like a
plate with initial deflection, operating in the pre-buckling state. Only when the load reaches the
value, at which stress in RP is close to critical for this plate, a quick increase in deflection also
occurs. At that moment, the whole cross-section already operates in the full post-buckling state. In
that case, buckling stress that is applied to estimate the effective width for CP can be determined at
the assumption that CP is elastically restrained. As regards the estimation of the effective width in
RP, the assumption concerns RP simple support (hinge) on the edge of connection to CP. Such an
approach simplifies computations, and from the engineering standpoint, is sufficiently accurate [16].
In studies [3,4], Chudzikiewicz presented an original theory of “deformability buckling” of axially
compressed thin-walled bar, for which a half-wavelength of buckling is of the order of the member
length. Cross-sections were divided into simple and complex ones. A cross-section is simple if its
deformation, due to, e.g. local buckling, does not directly cause displacements of the points in the
plane of a given plate (thin wall), but merely a deflection in the direction normal to this plate [3]. If
buckling results in displacements in the plane of the plate, such a cross-section is considered to be
complex [4]. Examples of simple and complex cross-sections, important from the technical

standpoint, are presented in Fig.1
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Fig. 1. Examples of simple (a) and complex (b) cross-sections acc. definition [3,4]

The division into simple and complex cross-sections, acc. Fig.1, was followed in this study to
simplify computational procedures. Conversely, “deformability buckling” as presented in studies
[3,4] was not analysed.

In studies [31,32], a segment of a thin-walled bar was defined as a member section separated by
transverse stiffenings (e.g. ribs, diaphragms or supports) which ensure rigid cross-section contour in
place of their location. The segment length is determined by the spacing of stiffeners, regardless of
spontaneously produced nodal lines of buckling. The minimal number of stiffeners is two. In this
case, the thin-walled member consists of one segment.

In study [32], a distinction was made between thin-walled bars with a “rigid cross-section contour”,
satisfying the assumptions of the Vlasov theory [44] for the whole elastic range and thin-walled bars
with a “flexible cross-section contour”, which are affected by local or distortional stability loss.
Additionally, the so-called “local critical bimoment” (B.,*) was defined, which was determined from
the condition of local buckling of the thin-walled bar segment under warping torsion.

By analogy to B./%, in this study, the notions of “local critical axial force” (Ne,*) and “local critical
bending moment” (M,*) are introduced. These are determined from the condition of local buckling
of the bar segment under simple load states (N or M). “Local” buckling resistance of the cross-
section (measured by external load) can be estimated from formula (2.1) for axial compression, and

from formula (2.2) for bending.
@.1) N, =0,4/V 0

22) My = Uchez,g/}’Mo
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where: o — local buckling critical stress in simple load states (N or M), A — gross area of cross-section, W,

— gross elastic section modulus, yu — partial factor of cross-sections resistance.

“Local” critical resistances (B.t, Not, M.,") impose a limitation on the theory of thin-walled bars by
Vlasov [44], restricting it to the pre-buckling range of behaviour of thin-walled bar segment with
flexible cross-section contour.

In monograph [12], the cross-section resistance from the condition of yield of the most compressed
edge of the effective cross-section, which is regarded as a conservative estimation of the limit load-
carrying capacity, was distinguished from the cross-section resistance in the failure stage. The latter
is determined for the mechanism of plastic hinge, and considered to be non-conservative estimation
of the limit load-carrying capacity.

To design reliable metal building structures, engineers focus on design resistance, which is
determined from the condition of yield of the most compressed edge of the effective cross-section.
That means conservative estimation of the limit load-carrying capacity acc. [12]. By contrast,
resistance in the failure stage is used when designing, e.g. mechanical energy absorbers [12].

To differentiate between local critical resistance and resistance from the condition of yield of the
most compressed edge of the effective cross-section, in the present study the latter is termed as the
design ultimate resistance. Conversely, the resistance of thin-walled cross-section in the failure
stage, which is characterised by large deformations [12], is not analysed in this study.

As regards the analysis of local buckling of a thin-walled member, technical literature does not
provide simplified methods for the determination of the degree of CP elastic restraint in the adjacent
RP. The aim of the present study is to provide a method for determining buckling stress and
computing the design ultimate resistance for a thin-walled cross-section. The method is termed the
Critical Plate Method (CPM), and it accounts for the conditions of CP elastic restraint in RP (or

RPs) and the effect of longitudinal stress variation.

3. THE CRITICAL PLATE METHOD (CPM)

3.1. ASSUMPTIONS

Due to boundary conditions on longitudinal edges that occur in practice, CPs were divided into two

basic types: I — internal plates (Fig.2a,b) and II — cantilever plates (Fig.2c). Additionally, internal
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plates were categorised into two subtypes (Ia and Ib). In this study, it was assumed that for the
single edge fold stiffener, having the same thickness as the flange (Fig.2b.), the advantageous effect
of elastic restraint against rotation about this edge is modest [1], and from the technical standpoint,

can be neglected.

Ia Ib 11

Fig. 2. Types of “critical plates”

It was assumed that: 1) CP behaves as an internal plate elastically restrained against rotation (Ia, Ib),
or a cantilever plate (II), 2) CP connection to RP (for instance to the web) is rigid, which means that
on the longitudinal edge of their connection, the conditions of continuity of displacements (angles of
rotation) and forces (bending moments) are fulfilled, 3) transverse edges of the plates (CP and RP)
on the bar segment ends are simply supported.

In practice, when making assumption 2, it is necessary to make certain that the continuity mentioned
above occurs in connections of the cross-section component plates. The impact of the
manufacturing technology of thin-walled section on reciprocal elastic restraint of individual
elements of the plate should be considered. In welded sections (e.g. box sections), a
disadvantageous effect of residual welding stress can be manifested. As shown in study [27], the
strongest effect of that kind occurs in axially compressed cross-sections. A similar effect is also
found in cold-formed sections that are additionally welded [7]. In such cases, the degree of
reduction in the local buckling critical stress and in the ultimate resistance of the cross-section can
be accounted for as it was done in studies [7,17,27]. However, a major impact of the residual stress,
related to the section bending, on the reduction in reciprocal elastic restraint of the walls was not
observed [7]. Instead, a beneficial effect was attributed to an increase in the index of fixity due to
the dimensions of rounded corners resulting from the bending process. Yet, study [7] demonstrated
that this effect is not revealed until large bending radii are found, and that is reduced due to the

compressive stress in the corners. For example, in the elastic range, for plate slenderness 1, =~ 47,
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and at compressive stress o.~100 MPa, the advantageous effect occurs only above 7/¢ > 15, and for
Ap = 67 and 6.~100 MPa - above r/t > 22 [7]). In view of the above, in technically important cases,
the advantageous effect of the roundness magnitude can be disregarded because modern
manufacturing methods of cold-formed members allow obtaining satisfactory cross-section
geometry already at 7/r=2+5. Consequently, in this range of /¢ ratios, the advantageous effect of
material strengthening is found in the section corners, which is due to cold work [50].

Thus, in technical computations, it can be assumed that continuity of displacements and forces on
the edge of CP connection to RP is found in cold-formed and hot-rolled sections, and also in full
penetration butt welds section, or those with double fillet welds (e.g. in I-section, at the flange/web
connection). However, further investigations are still required for the problem of the elastic restraint
of thin walls jointed by a single fillet weld, e.g. in box sections.

As stated earlier, thin-walled cross-sections built from thin plates are divided into: 1) simple cross-
sections and 2) complex cross-sections acc. [3, 4] (Fig.1). It is possible to claim that simple cross-
sections can locally buckle acc. Hancock [5] and undergo “deformability” buckling [3], whereas
complex cross-sections can be subjected to local, distortional [18], and also “deformability”
buckling [4].

From the standpoint above, when conducting the analysis of exclusively local buckling, cross-
sections showing behaviour similar to that of simple cross-sections can also include typical box
sections, and those open sections, the flanges of which have a relatively narrow single edge fold
stiffener. Such a stiffener constitutes the flange support, with spring stiffness K [50], preventing its
deflection, yet it does not act as a restraint against rotation [42]. That results from low torsional
stiffness of the single edge fold stiffener having the thickness equal to that of the flange. This
stiffness is additionally reduced by compressive stress. According to [50], the analysis of local
buckling of the stiffened flange can be made on the assumption that spring stiffness of the stiffener
K = . Additionally, it is assumed that, in this case, the stiffener width is sufficient to not make the
element buckle locally. To meet this requirement, it is enough that the thin wall thickness should be
greater than:

e [f

t>—-
G0 326\ &,

where: ¢ — width of the single edge fold stiffener, f;,— basic yield strength, k— buckling coefficient acc. [50]

As regards typical box sections, it is local buckling that is primarily decisive for their deformation.
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Although in study [4] those were categorised as complex cross-sections (Fig.1b), “deformability”
buckling occurs at much higher loads on box cross-section relative to its local critical resistance.

In this study, the cross-sections mentioned above, whose behaviour is similar to that of simple
cross-sections were termed semi-complex. Examples of such cross-sections and the proposed way

of computational modelling of these are shown in Fig. 3.

a) b) c)
I"l =1 %A 4 A I’_~\Iﬁ-‘2 A l\‘—— |%-:\4 lg}-
—l Lol | . J L !

Fig. 3. Examples of semi-complex cross-sections and their computational modelling

3.2. DEFINITION OF THE CRITICAL PLATE

The term “critical plate” (CP) was chosen for this element of thin-walled section, a given stress state
of which is characterised by the lowest critical stress, while taking into account reciprocal elastic
restraint of component plates on the longitudinal lines of their connection to a cross-section.

The issue is which thin wall of the cross-section acts as CP at a given stress distribution. It can be
resolved by means of the analysis of the local buckling critical stress for separate plates, elastically
restrained against rotation on longitudinal edges. In this case, the weakest plate (at a given stress
distribution) is characterised by the lowest local buckling critical stress. In the generalized
geometric framework of the thin-walled cross-section, the condition for CP can be written as

follows:

c

(3.2) o, =min{c, ;}

where: oy — critical stress for CP when taking elastic restraint into account, o..; - critical stress for the

remaining i-th plates, under the same assumption.

For simple and semi-complex cross-sections, the condition for CP is simplified to the following:

(3.3) o’ =min{c’

cr,s cr,i
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where: ¢°.s - critical stress for CP on the assumption of CP simple support on one or both longitudinal

edges (Fig.2), 0., - critical stress for the remaining i-th plates, under the same assumption.

Condition (3.3) simplifies computations, because ¢’ can be determined from a widely known

formula:

(3.4 O =kioy,

where: £°; — basic plate buckling coefficient for separate, simply supported i-th plate at given load

distribution (e.g. acc [51]), oz, - Euler stress for the i-th plate acc. formula:

7’E t ’
3.5 R
G2) 7 12(1—1/2)(17,.]

where for E = 210000 N/mm? and v = 0.3, it can be approximately assumed that ox;= 190000(#;/b;)* [51].

After CP has been identified in the thin-walled cross-section, it is assumed CP is elastically
restrained against rotation in the adjacent RP (Fig.2bc), or with two-sided restraint in the restraining
plates (Fig.2a and Fig.3). That means the critical stress for CP is higher than for the assumption of
CP simple support. If the adjacent plates (walls) are under the same critical stress, or the differences
in the critical stress between those plates are lower than approx. 15%, their reciprocal elastic
restraint does not occur, or is very weak. When that is the case, computations of cross-section
resistance can be performed on the basis of the method involving the separation of the pin-
supported plates, e.g. acc. [S1].

For particular geometric ratios of complex cross-sections shown in Fig.1b, or for cross-sections
having even more complex geometry, the condition acc. formula (3.3) is not sufficient. In that case,
it is necessary to rely on a more general condition acc. formula (3.2). The manner of identifying CP

in complex cross-sections on the basis of condition (3.2) will be discussed in a separate study.

3.3. BOUNDARY CONDITIONS OF THE CRITICAL PLATE

The degree of the elastic restraint of the longitudinal edge of CP, which constitutes the internal plate
Ia (for y,=0 and ys=by), plate Ib (for y,=0) or cantilever plate II (for y,=0) was described by means
of the index of fixity x, which has the form:
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3.6) x=1/(1+2D,/bC,)

where: Cp - rotational spring stiffness equal to the bending moment created by rotation by a unit angle
(Co=M/B), bs — width of the plate subjected to buckling (CP), D; — plate flexural rigidity acc. formula:
Et}

3.7 D, = m

where for E = 210000 N/mm? and v = 0.3, it can be approximately assumed that D,= 19200¢,’.

The index of fixity x (3.6) ranges from =0, for simple support, to x=1, for complete restraint.

On the basis of theoretical e.g. [1,8,9,19,32] and experimental e.g. [2,11,15,21,25,26] investigations,
it was stated the rotational spring stiffness (Co) of the CP supported edge is most affected by the
plate (RP) that is directly adjacent to CP, on the assumption that the plates are rigidly connected
along the edge they share. The rotational spring stiffness resulting from the action of RP can be

determined from formula:

cn.D.
(3.8) c, = (1—"”]

where: ¢; — parameter of the geometric arrangement of component plates joined on the j-th edge, i —
coefficient dependent on load distribution, geometry and support conditions of RP, b, — width of RP, D, =
19200z — plate flexural rigidity of RP, s — sought critical stress for CP, a.,, - critical stress for RP treated
as a simply supported plate, determined for the half-wavelength equal to the buckling length (/) of CP.

It should be noted that in formula (3.8), the expression in parenthesis accounts, in an approximate
manner, for the disadvantageous effect of compressive stress in RP [18].

In simple (Fig.1a) and semi-complex (Fig.3) cross-sections, parameter ¢; takes the following values:
¢;=1, if one RP stabilizes one CP on one edge (Fig.4a), c;=1/2, if one RP stabilizes two CPs on one
edge (Fig.4b), and ¢;=2, if two RPs stabilize one CP on one common edge (Fig.4c).

Thus computations are iterative in nature because to determine rotational spring stiftness Cy(3.8), it
is necessary to have buckling stress for CP, which depends on « acc. (3.6), and consequently, on Cp.
For simple and semi-complex cross-sections, the process is fast convergent, and generally two or

three iterations are sufficient.
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a) b) 9)
[ _cp RP j=1
=1 \C\I; — Rp

];a
&
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|

Fig. 4. Cross-section division into critical (CP) and restraining (RP) plates

3.4. DEFINITION OF “ZERO” CROSS-SECTIONS

Cross-sections, in which thin walls in compression (e.g. flange and web) at a given stress
distribution lose stability simultaneously, are termed “zero” cross-sections. In such a case, reciprocal
elastic restraint of compressed component plates does not occur.

In simple or semi-complex “zero” cross-sections (Fig.5a,b), the following can be differentiated:
flanges with width b and thickness #+ and webs with height # and thickness #,. The dimensions of
the thin-walled cross-section given above were assumed for the so-called midlines of component
plates. “Zero” cross-sections were defined on the basis of their geometry and the manner of loading.

These referred to the web height. The height of “zero” cross-section /4o can be determined from

formula:
tb
(39) h() =0
Iy
where:

(3.10) o=.k./k] .

kv, kf' - plate buckling coefficients for web and flange, respectively, on assumption of their simple support

on the connection line.

If in the thin-walled cross-section 4 < ho, compressed flange is decisive for local buckling (the
flange is CP). If & > hy, it is the web, compressed or bent in its plane, that decides (the web is CP),
and if 4 = ho, both walls (e.g. flange and web) are critical plates and elastic restraint does not occur
for them. In such a case, the cross-section resistance can be determined on the basis of the concept

of the separation of plates, simply supported on the longitudinal edges of connection. The values of
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coefficient 0 for some types of simple and semi-complex cross-sections in basic stress states are

presented in Fig.5 (compressive stress was hatched).

2 b b b
el —
Al
h h h
Wl
746 426
b)
b b b
b i — [
|I 1 | 1
h h h
LY
L J |
5= 10 244 14

Fig. 5. Examples of “zero” cross-sections and selected values of coefficient &

3.5. TYPES OF RESTRAINING PLATES

Depending on boundary conditions and load state on longitudinal connection edges, restraining

plates can be divided into three types (i = 1, 2, 3) shown in Fig.6.

a) i=1 b) i=2 ) i=3

Fig. 6. Types of restraining plates with width of b, and thickness of #. acc. [10]

For the sake of local buckling analysis, coefficients #; in formula (3.8) can be adopted acc. [10]. In
this study, the formulas for coefficients of rotational spring stiffness of the edge of the plate
subjected to buckling were derived on the basis of the differential equation for the restraining plate

bending. The formulas were reliant on the static scheme and the manner in which the i-th restraining
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plate was loaded (Fig.6) due to the buckling of the critical plate. Simple approximation formulas for

coefficients #; were also proposed:

2
(3.11) n = 118.8+84.6[§"] -89
2
(3.12) m =334+ 50.7(5’*} —2.78
2
(3.13) ny=.]0.533+ 44.9[5”] -0.73

where /. — predicted length of CP buckling half-wave.

In study [10], however, detailed guidelines on the appropriate selection of the critical length (/) of
the plate undergoing buckling were not provided. It was only suggested that for an internal plate, it
is possible to assume /. = by, while for the cantilever plate buckling, approximately /.- = co. In such
a case, for different types of plates restraining (Fig.6) the critical cantilever plate, coefficients #; are:
n=2, n2=3 and 53=0, respectively. The computations conducted for this study indicate that such an
approach produces very conservative estimates, especially for cantilever CPs.

To determine Cy acc. (3.8) and « acc. (3.6) in a more accurate way, it is necessary to estimate the
expected buckling length (/) of CP. This is related to the assumption that for CP buckling, half-
wavelength of RP deformation is approximately equal to /..

For the stress distribution, which is constant along the bar segment length, spontaneously formed
buckling half-waves are the same in length and amplitude. In longitudinal stress variation, buckling
half-waves created along the segment length differ in length and have varied (e.g. decreasing)
amplitudes [31,32,33]. Consequently, the bar segment zone, in which the maximum compressive
stress occurs, is decisive for local buckling. In study [33], the “critical half-wave” was defined as
the one with the highest deflections, which occurs in the area of the greatest stress. The critical half-
wavelength of buckling (/) was assumed to be, as for constant stress intensity, the distance between
the points of inflexion of the “trace” of the first buckling mode.

When « > 0, elastic restraint of the CP edge in RP is found, and CP buckling length is: 1) for the
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internal plate (Ia or Ib, Fig.2): /.,<bs , and 2) for the cantilever plate (II, Fig.2): /.- < 4.25b; for the
range 0.05 <k < 1, which means that /.,<<co.

Approximation formulas for estimating the CP buckling length as a function of x for axially
compressed, long plates at constant stress intensity along the length were derived by the author in
the following studies [33,40,41]. These formulas can be presented as follows (Fig.2): a) for the
internal plate (Ia) — formula (3.14), b) for the internal plate (Ib) — formula (3.15), c¢) and for the
cantilever plate (II) — formula (3.16).

(3.14) L, =b,(1-0.23k+0.07x> —0.17x* )

(3.15) L, =b[1-0.103(x + &)
2.02-037x

(3.16) L, = b —gm

Study [34] demonstrated that in typical cases of the cantilever plate (II) eccentric compression in the
plane, the buckling length (/) could be also estimated from formula (3.16).

As indicated earlier, computations are iterative because to determine coefficient #;, it is necessary to
know the value of /.., which depends on index «. In turn, « depends on rotational spring stiffness Cp,
and eventually on the computed critical stress ocs. In computational practice, however, when an
assumption on the initial value of index « (e.g. from the range 0.2-0.5) is made, the process is fast
convergent. The accuracy that is satisfactory from the technical standpoint is obtained after only two
or three iterations.

The critical stress in RP (oc.) (for one half-wave of deflection), found in formula (3.8),
corresponding to the buckling length (/.-) of CP can be estimated on the basis of [1,18,43]: a) for
axially compressed internal plate acc. formula (3.17), for internal plate bent in its plane acc. formula

(7.8), and for axially compressed cantilever plate acc. formula (3.19):

L _mD (b 1L, ’
(3.17) T ry<a Py

2
(3.18) o, = l’f; (113224 +1.975! +12.06/287 )

carr
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2 2
=7 D s b;
1 b’ I

cr

(3.19) o,

Such an approach allows accounting, in an approximate but technically sufficient manner, for the
disadvantageous effect of compressive stress in RP. For longitudinal stress variation, the buckling
length of the “critical half-wave” [33] is from a few to several percent shorter than for constant
stress distribution along the bar segment. The buckling length can be determined using software
described in studies [33,40,41]. The adoption of /. acc. formulas (3.14, 3.15, 3.16) produces the
results that are sufficiently accurate from the technical standpoint. Also, that leads to slightly

conservative estimates of oe.s for CP, and oc for RP.

3.6. THE CRITICAL BUCKLING STRESS

Depending on load distribution, the elastic buckling stress for CP of the thin-walled section is

determined from formula:

(3.20) o, =kog,

where: k — plate buckling coefficient, oz - Euler stress for CP acc. formula (3.5).

Buckling coefficients (k) for different cases of the plate (CP in this case) support and loading were
presented by the author in the form of graphs in the following studies [32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42], and in the form of approximation formulas in [22, 23, 33, 40, 41]. In addition, the index
of fixity (x) and longitudinal stress distribution were accounted for using the following functions: a)

constant, b) linear and, ¢) non-linear acc. the second degree parabola.

3.7. COMPUTATIONAL PROCEDURE FOR CPM

In the Critical Plate Method, computations of the local critical resistance and the design ultimate
resistance of the thin-walled cross-section are run as follows:

1) identification of CP: a) for simple and semi-complex cross-sections — on the basis of

condition (3.3), Chapter 3.2 or Chapter 3.4; b) for complex cross-sections — acc. condition

(3.2), Chapter 3.2. The manner of CP identification acc. condition (3.2) will be presented in

a separate paper;
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2) assumption of the initial value of the index of fixity of the CP edge, e.g. xj-0=0.3;

3) estimation of the expected CP buckling length (/) acc. formulas (3.14, 3.15 or 3.16,
Chapter 3.5) depending on « value and plate type;

4) determination of coefficient #; on the basis of formulas (3.11, 3.12 or 3.13), depending on
RP static diagram and RP loading by the CP being buckled (Fig.6.);

5) for x; value, determination of the buckling coefficient (k) from studies [22, 23, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42], depending on the plate type and load distribution, and
computation of the CP buckling stress oc.s(k;) acc. formula (3.20);

6) estimation of the critical stress o..- for RP (for one half-wavelength of deflection) acc.
formulas (3.17, 3.18 or 3.19) and expected /.- of CP acc. step 3);

7) determination of the rotational spring stiffness (Cy) acc. formula (3.8) and the index of
fixity (x;j=;+1) for the first, and the successive iteration step;

8) repetition of steps 3) to 7), until xj = xj+1;

9) oers(kj+1) acc. formula (3.20) is the sought buckling stress for CP;

10) determination of the local critical resistance of the thin-walled cross-section on the basis of

CP buckling stress from formula (2.1) for axial compression, or formula (2.2) for bending;

11) determination of the design ultimate resistance of the cross-section using the effective

width method, on the following assumptions: a) the relative plate slenderness should be
determined for the critical stress in individual component plates, b) for CP, the stress
accounts for CP elastic restraint against rotation and potential longitudinal stress variation,
c) for RP, it is necessary to assume simple support on the same edge, d) boundary
conditions on the other edge of the internal RP generally only slightly affect the
computational results (in a conservative manner, simple support can also be assumed here),
e) for cantilever RP, the other edge is free (unsupported), f) the effect of the potential
longitudinal stress variation in RP is marginal and can be disregarded, g) effective widths
determined as above are put together into an effective cross-section, and on that basis the

design ultimate resistance is determined.

The difference with respect to the classic version of the effective width method primarily lies in the

following: 1) identification of the wall which functions as CP, 2) estimation of CP elastic restraint

in RP, 3) computation of the buckling stress for CP while taking into account x and potential

longitudinal stress variation, 4) determination of the effective widths of component plates acc.

assumptions above (from step 11).
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The procedure for the determination of the local critical resistance and the design ultimate resistance

of the thin-walled cross-section with the use CPM is presented in the examples in Chapter 4.

4. COMPUTATIONAL EXAMPLES

Examples of the CPM application to calculations of simple and semi-complex thin-walled cross-
sections of Class 4 are presented below. To estimate the amount of work necessary to make
calculations, all examples were calculated by hand. To simplify calculations, dimensions of the
midline of cross-sections were adopted due to the thin-walled nature of plate elements (Fig.2). From
the technical standpoint, this manner of calculations is accurate enough if the radius () of corner
roundness is: < 5¢ and » < 0.15 [50]. The determined local buckling critical stress was verified by

FEM computations performed using the Abaqus software [6].

Example 1.
Compute the local critical resistance and the design ultimate resistance of Z cross-section (Fig.7a.)
in axial compression. It should be noted that numbers given in parenthesis refer to formulas

presented in previous chapters.

. b) ©) d)
=1 CP 18 A
— W

100

=l mm  RPif(la)

a | = /<'
3

50 CP

Fig. 7. a) Cross-section geometry, b) division into CPs and RP, c) effective cross-section acc. the CPM,

d) mode of local buckling for a single half-wavelength

Data: S355 steel, f;=355 N/mm?; E =210000 N/mm?; v=0.3; = 1mm; 4=200 mm?; ymp=1.
Theoretical plastic resistance of the gross cross-section when local buckling is disregarded is:
Npi.ra = Afy/ymo=200-355/1 = 71000 N = 71 kN.

It is Class 4 cross-section (b/t =50 >14¢; h/t =100 > 42¢);

Euler stress (3.5): flange oy =190000(1/50)*=76 N/mm?; web a£,=190000(1/100)>*=19 N/mm?,
Flexural rigidity (3.7): flange, web: Dy = D,,=19200-1°=19200 Nmm.
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Computations acc. the CPM procedure:

1) identification of CP acc. Chapter 3.2.: critical stress in simply supported component plates
acc.[51] (3.4): flange 6%c,r=0.43-76=32.7 N/mm?%; web 0°¢,—=4+19=76 N/mm?; Z cross-section
acc.Fig.7a. is simple (Fig.1a), hence acc. condition (3.3): 6°¢,,= min{32.7; 76} = 32.7 N/mm? —
CP is a flange (flanges), and RP is a web (Fig.7b.);

2) initially it was assumed that xo= 0.2 (for zero step, j=0);

3) estimation of the buckling length acc. (3.16): /o0 = 50[(2.02-0.37-0.2)/0.2°25] =145 mm;

4) RP is the internal plate, loaded on both edges by buckling flanges (Fig.6a. and Fig.7b), hence
coefficient acc. (3.11): 71,0=[118.8+84.6(100/145)*]"2 - 8.9 =3.71;

5) buckling coefticient acc. approximation formula from study [33], or acc. Table 1 from study
[34]) is k(x0=0.2)=0.654; hence buckling stress for CP acc. (3.20): 0cr,5,0=0.654-76=49.7 N/mm?;

6) critical stress of RP for /.0, i.e. for a single half-wave acc. (3.17):

Oerr0= 3.142-19200/(1-100%)-(100/145+145/100)*=86.75 N/mm?;

7) rotational spring stiffness (3.8): Cgo0=1-3.71-19200(1-49.7/86.75)/100=304 (Nmm/rad)/mm,
hence the index of fixity (3.6): x = 1/[1+2-19200/(50-304)] = 0.284 > ko= 0.2;

8) first iteration step (j =1): x1=10.284; l,1=131 mm; n1,1=4.06; k (k1) =0.709; 6ers1=
0.709-76=53.88 N/mm?; 6cr,r1 = 81.46 N/mm?; Cp1 =264 (Nmm/rad)/mm; x =0.256 < x1 =0.284;
second iteration step (j =2): k2=0.256; l,2=135mm; #12=3.95; k(x2) =0.69; 0crs2=
0.69:76 = 52.44 N/mm?;  0cr2 = 82.83 N/mm?; Cp2=278 (Nmm/rad)/mm; x>=0.266 =~k ;

9) eventually, buckling coefficient acc.[33]: k (k2=0.266) = 0.696; buckling stress of CP is: ocrs =
0.696-76 = 52.9 N/mm?, which is greater than the stress value determined acc.[51] by:
[(52.9-32.7)/32.7]-100% = 61.8 %:

10) local critical resistance of the cross-section in axial compression acc. (2.1) Nev® = Aoers/ymo
=200-52.9/1=10580 N = 10.58 kN, while the local critical resistance estimated for the critical
stress determined acc. [S1]: NoF€ = 6.54 kN.

FEM verification with the use of ABAQUS software [6] — Fig.8:

S4R shell elements were used (four nodal ones with six degrees of freedom in a node), having the
dimensions 5x5 mm (Fig.8a), “Buckling” procedure was selected, segment length /; =400 mm (i.e.
approx. 3/c.2 acc. step 8.), boundary conditions: continuous support along the cross-section midline
in the direction perpendicular to the i-th component plate (Fig.8a.).

Critical stress acc. FEM: 672" = 55 N/mm?.

When compared with the CPM, the difference was approx. [(55-52.9)/52.9]-100% =+ 4 %.
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QDB: Z100_50_1_1N_shell_05_zetownik_5.0db  Abagu

Step: Buckling

Mode 1: EigenValue = 55.001

Primary Var: U, Magnitude

Deformed Var: U Deformation Scale Factor: +4.000e+C

Fig. 8. Results of FEM calculations [6] for Example 1.: a) finite element mesh and boundary conditions,

b) the way load is applied, c) buckling mode

Comparison of the ultimate resistance of the cross-section acc. the CPM and acc. Eurocode 3:

A) CPM (Chapter 3.7. step 11);

Relative slenderness: flange (CP): 4,r =(355/52.9)"2=2.59; web (RP) Aw=(355/76)"">=2.16, hence
pr=0.36; ber=0.36-50=18 mm, and p,=0.42; bey=0.42-100=42 mm (Fig.7c);

Aegf? =2(18-1421-1) = 78 mm?; Ny = Aeff 13/ ymo = 78-355/1= 27690 N = 27.7 kN

B) Eurocode 3 [49,51]:

Jor = (355/32.7)12=3.295; p;=10.286; ber =0.286-50=14.3 mm,

for the web without changes: bew =42 mm; Ay = 2(14.3-1+21:1) =70.6 mm?;

Nera = Aegr 3/ Ym0 =70.6-355/1= 25063 N = 25.1 kN

Resistance acc. the CPM is greater is than that from Eurocode 3 by approx.:

[(27690-25063)/25063]-100% = +10.5 %.

Example 2.

Compute the local critical resistance and the design ultimate resistance of C cross-section (Fig.9a)
in bending. The beam static scheme is shown in Fig.9b. Load P and support reactions are applied at
the cross-section shear centre. The beam is protected against lateral-torsional buckling. The member

is composed of two symmetrical segments, each /;= L/2 =1000/2 = 500 mm in length.
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Fig. 9. a) Cross-section geometry, b) static scheme and the bending moment graph, c) stress state in CP,

d) effective cross-section acc. the CPM

Data: S355 steel, f,=355 N/mm?; E =210000 N/mm?; v=0.3; L=1000mm; /s = 500mm;

J=333333mm*; W)= 6667 mm’; yuo=1.

Theoretical elastic bending resistance of the gross cross-section when local buckling is disregarded:

Mo =W,e1fy/ymo=6667-355/1= 2366800 Nmm = 2.367 kNm.

Flange is Class 4 (b/t=50>14¢), web class will be specified after taking into account the shift of the

neutral axis caused by flange buckling;

Euler stress and flexural rigidity (acc. Example 1):

flange: orr =76 N/mm?; Dr=19200 Nmm; web: ogw=19 N/mm?; D,,=19200 Nmm

Computations acc. the CPM procedure:

1) identification of CP: compressed flange 0%y =0.43-76=32.7 N/mm?; bent web 0°¢,= 23.9-19=
454.1 N/mm?; C cross-section acc.Fig.9a is simple (Fig.1a), hence acc. condition (3.3): 6=
min{32.7; 454.1} = 32.7 N/mm? — the upper flange is CP, and web is RP;

2) due to a great difference in stress (32.7<<454.1 [N/mm?]), the initial assumption is xo = 0.5;

3) estimation of the buckling length acc. (3.16): /0= 50[(2.02—0.37-0.5)/0.5°2%] =109 mm;

4) RP is an internal plate loaded on one edge by the buckling upper flange (Fig.6b), hence
coefficient acc. (3.12) is #2,0=[33.4+50.7(100/109)*]">— 2.78 = 5.94;

5) buckling coefficient acc. study [33], for y=/y/bs=500/50=10, and for linear stress distribution for
m=1-o1/o0=1 is k(x0=0.5) = 1.005, hence buckling stress for CP acc. (3.20):

Oers,0 = 1.005-76 = 76.38 N/mm?;

6) critical stress of RP for /.0, i.e. for a single half-wavelength acc. (3.18):
Oer0=210000-1%/(109%-100%)-(11.32-109* + 1.97-:100* +12.06-109%-100%) = 570.5 N/mm?;

7) rotational spring stiffness (3.8): Cpo =1:5.94-19200(1-76.38/570.5)/100= 988 (Nmm/rad)/mm,
hence the index of fixity (3.6): x = 1/[1+2-19200/(50-988)] = 0.563 > ko= 0.5;
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8) first iteration step (j =1): x1=0.563; ;1 =105 mm; #2,1=6.13; k (1) = 1.048; 0crs1 =
1.048:76=79.65 N/mm?; oc,1 = 553 N/mm?; Cy1=1007 (Nmm/rad)/mm; x =0.567 = 1

9) eventually, buckling coefficient acc. [33]: k (k1 =0.567) = 1.051; CP buckling stress was:
Oers = 1.051-76 =79.9 N/mm?; it is greater than the stress determined acc. [51] by:
[(79.9-32.7)/32.7]-100% = 144.3 %.

cp

10) local critical resistance of the cross-section in bending acc. (2.2): Mo? = Gcrs Wy,et [ymo=
6667-79.9/1=532700 Nmm = 0.533 kNm, whereas the value estimated for the critical stress
determined acc. [51]: M,F“*=0.218 kNm.

Critical load: A) CPM: Po,” = 4-0.533/1=2.13 kN; B) Eurocode 3: P,*“3=4-0.218/1=0.87 kN

FEM verification with the use of ABAQUS software [6] — Fig.10:

S4R shell elements were used having the dimensions 5x5 mm (Fig.10a), “Buckling” procedure was
selected, boundary conditions acc.Fig.10a: support by diaphragms,] mm in thickness, load applied
acc. Fig.10b (central diaphragm 1 mm in thickness), concentrated force applied to the diaphragm at
the cross-section shear centre. Critical stress acc. FEM: P,,/®M = 2.2 kN

When compared with the CPM, the difference was approx [(2.2-2.13)/2.13]-100% =+ 3.3 %.

L

Y ODB: C100_50_1_shell_przep_5_0,2_r_u_p_3+2.0db  Abaqus
Step: Buckling
Mode 1! Eigenvalue = 2219.5
Primary Var: U, Magnitude
z X Deformed Yar: U Deformation Scale Factor: +1.000e+02

Fig. 10. Results of FEM calculations [6] for Example 2: a) finite element mesh and boundary conditions,

b) the way load is applied, c¢) buckling mode
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Comparison of the ultimate resistance of the cross-section acc. the CPM and acc. Eurocode 3:

A) CPM (Chapter 3.7. step 11):

Relative slenderness of the flange (CP): 4,y =(355/79.9)2=2.11; p;=0.43; ber =0.43-50=21.6mm;
first shift of the neutral axis: ¢;=8.3 mm; height of the web zone in compression: 4.=58.3 mm,;
stress ratio in the web: y = o2/01=—-0.72;

the web is Class 4. (h/t = 100 > 42¢/(0.67 — 0.33-0.72) = 78.7;

buckling coefficient acc. [51]: k-=17.41;

critical stress for the web: oo = 17.41:19 =331 N/mm?;

relative slenderness of the web (RP): Ay =(355/331)"2=1.036; hence p.=0.85; bey=0.85-58.3=
49.6 mm; b.1=0.4-49.6=19.8 mm; b.>=0.6-49.6=29.8 mm;

second shift of the neutral axis: e2=10.1 mm; distance to the compressed flange z. = 60.1 mm;
(Fig.9d), Jos? =239855 mm*; Wes” = 3991 mm?®; Moy = Wey*f; /ymo=3991-355/1=1416800 Nmm
=1.417 kKNm; ultimate load: P?¥ =4-1.417/1=5.67 kN.

B) Eurocode 3 [49,51]:

Jor=(355/32.7)"2=3.295; p;=0.286; ber =0.286-50=14.3 mm;

e1=10.9 mm; %.=60.9 mm; y = o2/o1=—0.64; k,=15.8; Gerw= 15.8-19 = 301 N/mm?;
Jow=(355/301)2=1.09; p,=0.81; bey=0.81-60.9=49.3 mm; b1 =0.4-49.3=19.7 mm;
be2=0.6-49.3=29.6 mm; e>=13.5 mm; z. = 63.5 mm; Jo;=208952 mm®*; W.;r=3291 mm?;
Mera= Wy fy/ ymo=3291-355/1= 1168300 Nmm = 1.168 kNm; P =4-1.168/1= 4.67 kN.

Ultimate load acc. the CPM is greater than that from Eurocode 3 by approx.:
[(5.67-4.67)/4.67]-100% = +21.4 %.

Example 3.

Compute the local critical resistance and the design ultimate resistance of the box cross-section
(Fig.11a) in bending. The static scheme of the continuous beam is shown in Fig.11b. The member is
provided with restraining diaphragms at the sites where concentrated forces are applied (at the
centre of the span and on the supports). Because of the cross-section shape, the beam is not
subjected to lateral-torsional buckling. Over the length of the span, the member is composed of two

symmetrical segments A and B, each /;= L/2 = 4000/2 = 2000 mm in length.
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Fig. 11. a) Cross-section geometry, b) static scheme and the graph of the bending moment,

c) stress state in CP, d) effective cross-section acc. the CPM

Due to the distribution of the bending moment, over the segment length, a change in stress sign

occurs, both for the upper and the lower flange. To determine the cross-section resistance, it is

sufficient to take into account the stability of, e.g. the upper flange in segment “B”. In study [33], it

was shown that when a change in stress sign (from compression to tension) occurs, while

determining critical stress, it is sufficient to consider only one compressed plate zone of the length

of /. =1000 mm. The problem is reduced to the examination of the stability of the plate of the upper

flange acc. diagram shown in Fig. 11c.

Data: S355 steel, £;,=355 N/mm?; E =210000 N/mm?; v =0.3; L = 4000 mm; /= 2000 mm;

[-=1000 mm; J,=16-10° mm*; W,,;=16-10* mm>; yap=1.

Theoretical elastic bending resistance of the gross cross-section when local buckling is disregarded:

Mot =W,e1f5/ym0=16-10%-355/1= 56.8-10° Nmm = 56.8 kNm.

Compressed flange is Class 4. (b/t =66.7 > 42¢); the web class will be specified after taking into

account the shift of the neutral axis caused by flange buckling;

Euler stress and flexural rigidity of component plates:

ogr =05w=42.75 N/mm?; Dy = D,= 19200-3°=518400 Nmm;

Computations acc. the CPM procedure:

1) identification of CP: ¢%y=4-42.75=171 N/mm?; ¢°cr,w=23.9-42.75=1022 N/mm?; semi-
complex cross-section (Fig.3c), hence acc. criterion (3.3): 0%,s= min{171; 1022} = 171 N/mm?
— CP is the compressed flange, and RPs are webs;

2) due to a great difference in stress (171<1022 [N/mm?]), an initial assumption is that xo= 0.4;

3) from formula (3.14): L0 =200[1-0.23-0.4+0.07-:04>—0.17-0.4*] =182 mm;

4) RP is the internal plate loaded on one edge by the buckling upper flange (Fig.6b. and Fig.11a),
hence coefficient acc. (3.12): 72,0=[33.4+50.7(200/182)]">— 2.78 = 6.95;

5) acc. studies [23,40], for y=I./bs=1000/200=10, and mi1=1-01/00=1 coefficient k(xo=0.4) = 5.18,
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hence acc. (3.20): Gers0 = 5.18:42.75=221.4 N/mm?;

6) from formula (3.18): ger,0=210000-3%/(1822-200%)-(11.32-1824+1.97-200* +12.06-182%-200%) =
1025 N/mm?;

7) from formula (3.8): Cp0=1-6.95-518400(1-221.4/1025)/200=14123 (Nmm/rad)/mm, hence from
formula (3.6): x = 1/[1+2-518400/(200-14123)] = 0.73 > ko= 0.4;

8) first iteration step (j=1): k1 = 0.73; L1 =161 mmy; #2,1 =7.786; k(1) =5.99; 0cr,51=256.1 N/mm?;
Gert = 1060 N/mm?; Cp1 =15305 (Nmm/rad)/mm; = 0.747 > k1;
second iteration step (j=2): k2~ 0.75; l2=159 mm; #22=7.88; k(x2)=6.07;
Oers2=259.5 N/'mm?; oer2 = 1055 N/mm?; Cg2=15401 (Nmm/rad)/mm; x=0.75 = x2;

9) eventually k («2) = 6.07; buckling stress: oc,s=259.5 N/mm? ; it is greater than the stress
determined acc.[51] by: [(259.5-171)/171]-100% = 51.8 %.

10) local critical resistance of the cross-section in bending acc. (2.2): Mo® =Wy, e Ocr,s/ymo=
16-10*259.5/1=41.52-10° Nmm = 41.5 kKNm, whereas the value estimated for critical stress
determined acc. [51]: M., =27.4 kKNm.

The critical load: A) CPM: P, = 8-:41.5/4= 83 kN; B) Eurocode 3 P.,*®} = 8:27.4/4=54.8 kN

FEM verification with the use of ABAQUS software [6] — Fig.12:

S4R shell elements were used having the dimensions 10x10 mm (Fig.12a), “Buckling” procedure
was selected, boundary conditions acc. Fig.12a: continuous support along the cross-section midline
in three directions, load applied acc. Fig.12b (the thickness of the invisible membrane at the
member midspan was 1 mm). The critical load acc. FEM: P.,”®M = 85.22 kN. When compared with
the CPM, the difference was approx. [(85.22-83)/83]-100% =+ 2.7 %.

Comparison of the ultimate resistance of the cross-section acc. the CPM and acc. Eurocode 3:
A) CPM (Chapter 3.7. step 11):

Flange relative slenderness (CP): 4,/=(355/259.5)"2=1.17; p;=0.69; bo;r=0.69-200=138 mm;
the neutral axis shift: ;=8.4 mm; height of the web zone in compression: 4.=108.4 mm;
stress ratio in the web: w = 02/01 = —0.85;

the web is Class 3. (h/t = 66.7 < 42¢/(0.67 — 0.33-0.85) = 87.3;

Jef? =13983740 mm*; WeyP= 129001 mm?;

Meyf? = Wegt® £/ ymo=129001-355/1 = 45795000 Nmm= 45.8 kNm;

Ultimate load: P? =8-45.8/4=91.6 kN
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WC3_shell_10x10_przepona_1.0db  Abaqus/Standard 6.12-2

6: Eigenvalue = 85.221
nary Var: U, Magnitude
ormed Var: U Deformation Scale Factor: +4,000a+02

Fig. 12. Results of FEM calculations [6] for Example 3.: a) finite element mesh and boundary conditions,

b) the way load is applied, ¢) buckling mode

B) Eurocode 3 [49,51]:

Jor=(355/171)1?=1.44; p;=0.59; ber =0.59-200=118 mm;

er=11.4 mm; h.=111.4 mm; y = o2/01=-0.8;

the web is Class 3. (W/t = 66.7 < 42¢/(0.67 — 0.33-0.8) = 84);

Jofr =13259054 mm*; W= 119022 mm?>;

Mera= Wiyl yo=119022-355/1= 42253000 Nmm = 42.2 kNm; P = 8-42.2/4= 84.4 kN.
Ultimate load acc. the CPM is greater than that from Eurocode 3 by approx.:
[(91.6-84.4)/84.4]-100% = +8.5 %.

5. COMPARISON OF THE CPM AND EXPERIMENTAL RESULTS

Table 1 shows the comparison of ultimate cross-section resistance determined experimentally in
studies [2,11,21,25,26] with theoretical calculations, according to Eurocode 3 [49,50,51] and the
results obtained with the CPM presented in this study. In order to calculate resistance in accordance
with individual research models, steel yield limit values (f,*), determined experimentally during
tests, were assumed. Table 1 lists the following information: Column 1 — reference number, Column
2 — type of cross-section and method of load application, Column 3 — research model type and basic
cross-section dimensions, Column 4 — slenderness CP (l,), Column 5 — £ [N/mm?], Column 6 —

M., ultimate resistance determined experimentally, Column 7 — M, theoretical elastic bending
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resistance for the gross cross-section, acc. the formula: M= We £,*, Column 8 — M4, the cross-
section resistance, determined acc. Eurocode 3 [49,50,51], Column 9 — M., local critical
resistance within the elastic range, acc. the CPM, Column 10 — Ms*, ultimate cross-section
resistance, acc. the CPM. It should be noted that all resistances, measured by means of the bending
moment, are given in [Nm].

On the basis of comparison of the values presented in Table 1, the following conclusions can be
drawn: 1) in a majority of cases, a very good (0.9—1) or good (0.8-0.9) relationship (Column 12) is
found between the ultimate resistance, determined acc. the CPM (Mc;*), and the ultimate resistance
determined experimentally (M), 2) in the majority of cases, the relationship between resistance
calculated according to Eurocode 3 (M.4#<%), and M, (Column 11) is too conservative, 3) My is
greater than M.;#C (Column 13), ranging from approx. 4% (case 11) to approx. 48% (case 9), 4) in
each case, theoretical elastic bending resistance for the gross cross-section (M) is larger than M;*
from approx. 1% (case 13) to approx. 150% for case 9, 5) the most significant differences between
M, and My are found for cases 7, 9, and 12, in which the CP is an eccentrically compressed
cantilever wall (Note that to determine Wep, formulas for the elastic effective width acc. [51] were
used), 6) the smallest differences were identified in those cases (1, 2, 3, 5), in which the CP is an
axially compressed cantilever wall, or an axially compressed internal wall (cases 10 and 11), 7) in
many cases, the local critical cross-section resistance (M. ) is lower than M., thus limiting the

Vlasov theory application to the range: M < M.

6. CONCLUSIONS

Local buckling of the most loaded bar segment can be decisive for the ultimate design resistance of
the thin-walled cross-section. However, the cross-section local buckling is, as a rule, most affected
by the weakest plate (wall), which is referred to as the critical plate in this study. CP is elastically
restrained in RP (or RPs) and variable stress distribution may occur over its length. Only in the so-
called “zero” cross-section, the elastic restraint of the component walls does not occur. If that is the
case, calculations can be performed as before, i.e. on the basis of the concept of separation of simply
supported plate elements. However, in many technically significant cases, the effect of the elastic
restraint of component plates (walls), like for distortional buckling, can be considered in the
computational model. Taking into account the influence of the elastic restraint of plate elements and

the longitudinal stress variation results in a more accurate computational model.
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The study presents the method of determination of the local critical resistance and the ultimate
resistance of the thin-walled cross-section. The method relies on the analysis of the behaviour of the
CP and that of RP (or RPs) rigidly connected to CP. The division of cross-sections into: 1) simple,
2) semi-complex and, 3) complex ones, presented in the study, makes it possible to identify the CP
for the first two types. That is done on the basis of simplified condition (3.3) applied to a certain
cross-section load state. The method of unambiguous CP identification in complex cross-sections
will be presented in a separate study. The index of fixity of the CP edge can be estimated on the
basis of the assumed form of forced RP deformation, while taking into account the effect of
compressive stress in its plane. Plate buckling coefficients (k) for CPs, elastically restrained in the
manner described above and subjected to longitudinal stress variation, can be determined on the
basis of the author’s studies [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. The local critical
resistance of the thin-walled cross-section, estimated on the basis of the CP buckling, sets a limit on
the validity of the Vlasov theory on thin-walled bars with rigid cross-section contour.

In order to determine the design ultimate resistance of thin-walled cross-section, the effective width
method can be applied, used for individual plates, acc. assumptions presented in Chapter 3.7,
step 11. The relative slenderness is determined on the basis of appropriate critical stress. For CP,
this stress takes into consideration the index of fixity and longitudinal stress variation. For RP, on
the same edge, simple support and constant stress distribution along the whole length can be
assumed. Such assumptions make it possible to determine the design ultimate resistance of the
cross-section in a way that is sufficiently accurate from the technical standpoint.

When using the CPM 1in practice, it is necessary to make sure that in the thin-walled cross-section of
concern, the conditions of continuity of displacements (angles of rotation) and forces (bending
moments) at edges of CP connection to RP (or RPs) are met. In technical calculations, it can be
assumed that this continuity occurs in cold-bent and hot-rolled cross-sections, and also in full
penetration butt-welded or double welded fillet types. However, the issue of the elastic restraint of
the component wall joined with a single fillet weld (e.g., in box cross-sections) requires further
research. Currently, it can be approximately assumed that the reduced index of fixity (x*) can be
estimated acc. formula: x*= ax/t; (where: a — thickness of a single fillet weld, x — index determined
for complete continuity of displacements and forces # — CP thickness). The method presented in the
study makes it possible to determine, either by hand or using spreadsheets, the local critical
resistance and the design ultimate resistance of thin-walled cross-sections with relatively low effort.

That allows, for example, preliminary design and simple verification of FEM calculations.
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OBLICZANIE NOSNOSCI PRZEKROJU CIENKOSCIENNEGO NA WYBOCZENIE LOKALNE

METODA ,,PLYTY KRYTYCZNEJ”

Stowa kluczowe: elementy cienko$cienne, sprezyste zamocowanie, ,,ptyta krytyczna”, wyboczenie lokalne,
wzdtuzna zmienno$¢ naprezen, lokalna no$nos¢ krytyczna, obliczeniowa nosnos¢ graniczna przekroju

STRESZCZENIE:

Stosowane obecnie w budownictwie metalowym prety cienko$cienne naleza do grupy elementdéw, ktorych nosnosé
przekroju jest warunkowana zjawiskami lokalnej lub dystorsyjnej utraty statecznosci. Przekrdj poprzeczny klasy 4. jest
na ogot ztozony ze smukto — ptytowych $cianek, ktore w analizie mozna modelowa¢ wprost jako ptyty. W aktualnie
obowigzujacej normie europejskiej EC3, zjawiska wyboczenia lokalnego i wyboczenia dystorsyjnego, pomimo roéznic
w dhugosciach wyboczeniowych, uwzglgdnia si¢ poprzez redukcj¢ nosnosci przekroju. Stosuje si¢ tutaj metode
szeroko$ci efektywnej (dla wyboczenia lokalnego) oraz grubosci zredukowanej (dla wyboczenia dystorsyjnego).
Po uwzglednieniu obu zjawisk, otrzymujemy przekroj efektywny stuzacy do obliczania odpowiednich charakterystyk
geometrycznych (np. Aey, Wey). Natomiast ogolng utrate statecznosci preta uwzglednia si¢ za pomoca wspotczynnika
redukcyjnego obliczanego na podstawie smuklosci wzglednej ogdlnej utraty statecznosci. W zwiazku z tym, poprawne
wyznaczenie napre¢zen krytycznych wyboczenia lokalnego (w zakresie spr¢zystym) nabiera szczegélnego znaczenia.
Stanowi bowiem podstawg¢ do wyznaczenia: 1) szerokosci efektywnych poszczegdlnych ptyt (Scianek), 2) naprezen
krytycznych wyboczenia dystorsyjnego (zastgpczy przekroj poprzeczny usztywnienia sktada si¢ z odpowiednich
szerokosci efektywnych), oraz 3) ogdlnej smuktosci wzglednej elementu.

W normach EC3 dotyczacych projektowania elementéw cienkosciennych (o przekroju klasy 4.) przyjeto koncepcje
separacji ptyt sktadowych przekroju przy zatozeniu ich swobodnego podparcia na podtuznych krawedziach laczenia.
Ponadto pominigto, czgsto wystepujacy w praktyce, efekt wzdluznej zmiennosci naprezen. Takie zatozenia
upraszczajace odbiegaja od rzeczywistego zachowania si¢ elementu cienkosciennego pod obciazeniem. Liczne badania
dos$wiadczalne oraz symulacje numeryczne (np. MES) wykazuja, ze w rzeczywistych przekrojach cienkosciennych
wystepuje wzajemne sprezyste zamocowanie $cianek sktadowych. Ponadto, w wielu technicznie waznych przypadkach,
wystepuje wzdtuzna zmienno$¢ naprezen.

W pracy przedstawiono metod¢ obliczen nosnosci przekroju cienko$ciennego wrazliwego na wyboczenie lokalne na
podstawie utraty statecznosci najstabszej ptyty (Scianki). Punktem wyjscia jest zatozenie, ze w przekroju
cienkosciennym mozna wyrozni¢ Scianke ,,najstabsza”, ktora jest sprezyscie zamocowana w sasiedniej $ciance
usztywniajacej (RP). ,,Ptyta krytyczng” (CP) nazwano t¢ $cianke ksztaltownika cienkosciennego, ktora w danym stanie
naprezenia charakteryzuje si¢ najnizszymi naprezeniami krytycznymi. Zatozono, ze potaczenie plyty krytycznej z plyta
podpierajaca jest sztywne, tzn. na podtuznej krawedzi ich taczenia zachowane sg warunki cigglosci przemieszczen
(katow obrotu) i sit (momentdéw zginajacych). Dalej s$cianke krytyczna modelowano, w zaleznosci od warunkow
brzegowych, jako sprezyscie zamocowana przeciw obrotowi plyte przgstowa lub wspornikowa. Oznacza to, ze
naprezenia krytyczne dla ptyty krytycznej sa wyzsze niz przy normowym zalozeniu jej swobodnego podparcia. Stopiefi

sprezystego zamocowania opisano za pomoca wskaznika utwierdzenia x, zmieniajacego si¢ od 0 dla swobodnego
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podparcia, do 1 dla pelnego utwierdzenia. Wskaznik ten oszacowano w oparciu o zatozong posta¢ wymuszonego
odksztalcenia plyty usztywniajacej, przy uwzglednieniu wplywu naprezen S$ciskajacych w jej plaszczyznie.
Wspotezynniki wyboczeniowe (k) dla tak sprezy$cie zamocowanych i zmiennie obcigzonych na dlugosci plyt
krytycznych zamieszczono w cyklu artykutéw autora [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. W pracach tych
uwzgledniono wzdhizny rozktad naprezen wg funkcji stalej, liniowej lub nieliniowej (wg paraboli 2. stopnia). Dla tak
obliczonych naprezen krytycznych wyznaczono ,,lokalna” nosnosé¢ krytyczna przekroju, ktéra ogranicza zakres waznosci
teorii pretow cienkosciennych Wlasowa (o nieodksztatcalnym konturze przekroju). Przekroje, w ktorych (dla
okreslonych proporcji geometrycznych) Scianki $ciskane ulegaja jednoczesnej utracie statecznosci (pod danym
rozktadem naprezen), nazwano przekrojami ,,zerowymi”. W ich przypadku nie wystgpuje wzajemne sprezyste
zamocowanie plyt sasiednich i spetnione jest normowe zatozenie separacji przegubowo podpartych plyt sktadowych
przekroju preta.

Do wyznaczenia obliczeniowej nosnosci granicznej przekroju cienkosciennego zastosowano metodg szerokosci
wspolpracujacej przy nastgpujacych zalozeniach: a) wzgledne smuktosci plytowe wyznacza si¢ dla naprezen
krytycznych poszczegdlnych ptyt sktadowych, b) dla ptyty krytycznej sa to napre¢zenia z uwzglednieniem jej sprezystego
zamocowania przeciw obrotowi oraz wzdluznej zmiennosci naprezen, c) dla ptyty usztywniajacej nalezy przyja¢ na tej
samej krawedzi podparcie przegubowe, d) warunki brzegowe na drugiej krawedzi przestowej ptyty usztywniajacej maja
na ogot nieznaczny wplyw na wynik obliczen, (konserwatywnie mozna tu réwniez przyja¢ podparcie przegubowe),
e) w przypadku wspornikowej plyty usztywniajacej, druga krawedz pozostaje swobodna (nie podparta), f) wpltyw
ewentualnej wzdluznej zmiennosci naprgzen w plycie usztywniajacej jest nieznaczny i mozna go pominaé, g) tak
wyznaczone szeroko$ci wspolpracujace ,,sklada si¢” z powrotem w przekroj efektywny i na jego podstawie wyznacza
si¢ obliczeniowa no$nos¢ graniczna.

Zastosowanie w praktyce metody plyty krytycznej (CPM) pokazano na przyktadach obliczeniowych. Wyniki obliczen
analitycznych poréwnano réwniez z wybranymi badaniami eksperymentalnymi. Z poréwnania wartosci zamieszczonych
w tabeli 1 wynika, ze dla wigkszosci zbadanych przypadkéow wystepuje bardzo dobra (0.9-1) lub co najmniej dobra
(0.8-0.9) relacja pomigdzy nosnosciag graniczng przekroju wyznaczong wg CPM (M."), a nosnoscia graniczng
wyznaczong eksperymentalnie (M,;*). W przypadku obliczen wg EC3 zanotowano znacznie wigksza rozbiezno$é
wynikow.

Wykazano, ze uwzglgdnienie sprezystego zamocowania plyty krytycznej oraz wzdluznej zmiennosci napr¢zen prowadzi
do wierniejszego odwzorowania zachowania si¢ elementu cienko$ciennego w inzynierskim modelu obliczeniowym.
Pokazana w pracy metoda umozliwia ,,r¢czne” (lub zapisane w arkuszach kalkulacyjnych) wyznaczenie ,lokalnej”
nosnosci krytycznej oraz obliczeniowej nos$nosci granicznej przekrojow cienkosciennych przy relatywnie niewielkim

naktadzie pracy. Umozliwia to np. projektowanie wstgpne oraz prosta weryfikacj¢ obliczen MES.



