Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access January 17, 2022

How many α-amylase GH families are there in the CAZy database?

  • Štefan Janeček EMAIL logo and Birte Svensson
From the journal Amylase

Abstract

The CAZy database is a web-server for sequence-based classification of carbohydrate-active enzymes that has become the worldwide and indispensable tool for scientists engaged in this research field. It was originally created in 1991 as a classification of glycoside hydrolases (GH) and currently, this section of CAZy represents its largest part counting 172 GH families. The present Opinion paper is devoted to the specificity of α-amylase (EC 3.2.1.1) and its occurrence in the CAZy database. Among the 172 defined GH families, four, i.e. GH13, GH57, GH119 and GH126, may be considered as the α-amylase GH families. This view reflects a historical background and traditions widely accepted during the previous decades with respect to the chronology of creating the individual GH families. It obeys the phenomenon that some amylolytic enzymes, which were used to create the individual GH families and were originally known as α-amylases, according to current knowledge from later, more detailed characterization, need not necessarily represent genuine α-amylases. Our Opinion paper was therefore written in an effort to invite the scientific community to think about that with a mind open to changes and to consider the seemingly unambiguous question in the title as one that may not have a simple answer.

References

[1] Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B., The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. https://doi.org/10.1093/nar/gkt117810.1093/nar/gkt1178Search in Google Scholar

[2] Henrissat B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. https://doi.org/10.1042/bj280030910.1042/bj2800309Search in Google Scholar

[3] Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J.P., Cellulase families revealed by hydrophobic cluster analysis. Gene 1989, 81, 83–95. https://doi.org/10.1016/0378-1119(89)90339-910.1016/0378-1119(89)90339-9Search in Google Scholar

[4] Raimbaud E., Buleon A., Perez S., Henrissat B., Hydrophobic cluster analysis of the primary sequences of α-amylases. Int. J. Biol. Macromol. 1989, 11, 217–225. https://doi.org/10.1016/0141-8130(89)90072-x10.1016/0141-8130(89)90072-XSearch in Google Scholar

[5] Henrissat B., Bairoch A., New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993, 293, 781–788. https://doi.org/10.1042/bj293078110.1042/bj2930781Search in Google Scholar

[6] Henrissat B., Bairoch A., Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 1996, 316, 695–696. https://doi.org/10.1042/bj316069510.1042/bj3160695Search in Google Scholar

[7] Campbell J.A., Davies G.J., Bulone V., Henrissat B., A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 1997, 326, 929–939. https://doi.org/10.1042/bj3260929u10.1042/bj3260929uSearch in Google Scholar

[8] Coutinho P.M., Deleury E., Davies G.J., Henrissat B., An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 2003, 328, 307–317. https://doi.org/10.1016/s0022-2836(03)00307-310.1016/S0022-2836(03)00307-3Search in Google Scholar

[9] Lombard V., Bernard T., Rancurel C., Brumer H., Coutinho P.M., Henrissat B., A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem. J. 2010, 432, 437–444. https://doi.org/10.1042/BJ2010118510.1042/BJ20101185Search in Google Scholar PubMed

[10] Levasseur A., Drula E., Lombard V., Coutinho P.M., Henrissat B., Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 2013, 6, 41. https://doi.org/10.1186/1754-6834-6-4110.1186/1754-6834-6-41Search in Google Scholar PubMed PubMed Central

[11] Janecek S., Sevcik J., The evolution of starch-binding domain. FEBS Lett. 1999, 456, 119–125. https://doi.org/10.1016/s0014-5793(99)00919-910.1016/S0014-5793(99)00919-9Search in Google Scholar

[12] Cockburn D., Wilkens C., Ruzanski C., Andersen S., Nielsen J.W., Smith A., Field R., Willemoës M., Abou Hachem M., Svensson B., Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 – a mini-review. Biologia 2014, 69, 705–712. https://doi.org/10.2478/s11756-014-0373-910.2478/s11756-014-0373-9Search in Google Scholar

[13] Boraston A.B., Bolam D.N., Gilbert H.J., Davies G.J., Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 2004, 382, 769–781. https://doi.org/10.1042/BJ2004089210.1042/BJ20040892Search in Google Scholar

[14] CAZypedia Consortium, Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 2018, 28, 3–8. https://doi.org/10.1093/glycob/cwx08910.1093/glycob/cwx089Search in Google Scholar

[15] Amemura A., Chakraborty R., Fujita M., Noumi T., Futai M., Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15. J. Biol. Chem. 1988, 263, 9271–9275. https://doi.org/10.1016/S0021-9258(19)76535-110.1016/S0021-9258(19)76535-1Search in Google Scholar

[16] Kuriki T., Imanaka T., Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J. Gen. Microbiol. 1989, 135, 1521–1528. https://doi.org/10.1099/00221287-135-6-152110.1099/00221287-135-6-1521Search in Google Scholar

[17] Watanabe K., Kitamura K., Iha H., Suzuki Y., Primary structure of the oligo-1,6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur. J. Biochem. 1990, 192, 609–620. https://doi.org/10.1111/j.1432-1033.1990.tb19267.x10.1111/j.1432-1033.1990.tb19267.xSearch in Google Scholar

[18] Nakamura A., Haga K., Ogawa S., Kuwano K., Kimura K., Yamane K., Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and α-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues. FEBS Lett. 1992, 296, 37–40. https://doi.org/10.1016/0014-5793(92)80398-z10.1016/0014-5793(92)80398-ZSearch in Google Scholar

[19] Takata H., Kuriki T., Okada S., Takesada Y., Iizuka M., Minamiura N., Imanaka T., Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1à4)- and α-(1à6)-glucosidic linkages. J. Biol. Chem. 1992, 267, 18447–18452. https://doi.org/10.1016/S0021-9258(19)36983-210.1016/S0021-9258(19)36983-2Search in Google Scholar

[20] MacGregor E.A., α-Amylase structure and activity. J. Protein Chem. 1988, 7, 399–415. https://doi.org/10.1007/BF0102488810.1007/BF01024888Search in Google Scholar PubMed

[21] Svensson B., Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett. 1988, 230, 72–6. https://doi.org/10.1016/0014-5793(88)80644-610.1016/0014-5793(88)80644-6Search in Google Scholar

[22] MacGregor E.A., Svensson B., A super-secondary structure predicted to be common to several α-1,4-d-glucan-cleaving enzymes. Biochem. J. 1989, 259, 145–152. https://doi.org/10.1042/bj259014510.1042/bj2590145Search in Google Scholar

[23] Jespersen H.M., MacGregor E.A., Sierks M.R., Svensson B., Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 1991, 280, 51–55. https://doi.org/10.1042/bj280005110.1042/bj2800051Search in Google Scholar

[24] Jespersen H.M., MacGregor E.A., Henrissat B., Sierks M.R., Svensson B., Starch- and glycogen-debranching and How many α-amylase GH families are there in the CAZy database? branching enzymes: prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 1993, 12, 791–805. https://doi.org/10.1007/BF0102493810.1007/BF01024938Search in Google Scholar

[25] MacGregor E.A., Relationships between structure and activity in the α-amylase family of starch-metabolising enzymes. Starch 1993, 45, 232–237. https://doi.org/10.1002/star.1993045070510.1002/star.19930450705Search in Google Scholar

[26] Janecek S., Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett. 1994, 353, 119–123. https://doi.org/10.1016/0014-5793(94)01019-610.1016/0014-5793(94)01019-6Search in Google Scholar

[27] Svensson B., Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 1994, 25, 141–157. https://doi.org/10.1007/BF0002323310.1007/BF00023233Search in Google Scholar

[28] Kuriki T., Imanaka T., The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999, 87, 557–565. https://doi.org/10.1016/s1389-1723(99)80114-510.1016/S1389-1723(99)80114-5Search in Google Scholar

[29] Uitdehaag J.C., Mosi R., Kalk K.H., van der Veen B.A., Dijkhuizen L., Withers S.G., Dijkstra B.W., X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat. Struct. Biol. 1999, 6, 432–436. https://doi.org/10.1038/823510.1038/8235Search in Google Scholar PubMed

[30] Janecek S., Svensson B., MacGregor E.A., α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 2014, 71, 1149–1170. https://doi.org/10.1007/s00018-013-1388-z10.1007/s00018-013-1388-zSearch in Google Scholar PubMed

[31] Janecek S., Marecek F., MacGregor E.A., Svensson B., Starch-binding domains as CBM families – history, occurrence, structure, function and evolution. Biotechnol. Adv. 2019, 37, 107451. https://doi.org/10.1016/j.biotechadv.2019.10745110.1016/j.biotechadv.2019.107451Search in Google Scholar

[32] MacGregor E.A., Janecek S., Svensson B., Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 2001, 1546, 1–20. https://doi.org/10.1016/s0167-4838(00)00302-210.1016/S0167-4838(00)00302-2Search in Google Scholar

[33] Moulis C., Andre I., Remaud-Simeon M., GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell. Mol. Life Sci. 2016, 73, 2661–2679. https://doi.org/10.1007/s00018-016-2244-810.1007/s00018-016-2244-8Search in Google Scholar PubMed

[34] Meng X., Gangoiti J., Bai Y., Pijning T., Van Leeuwen S.S., Dijkhuizen L., Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell. Mol. Life Sci. 2016, 73, 2681–2706. https://doi.org/10.1007/s00018-016-2245-710.1007/s00018-016-2245-7Search in Google Scholar PubMed PubMed Central

[35] Janecek S., Gabrisko M., Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell. Mol. Life Sci. 2016, 73, 2707–2725. https://doi.org/10.1007/s00018-016-2246-610.1007/s00018-016-2246-6Search in Google Scholar PubMed

[36] Leemhuis H., Dijkman W.P., Dobruchowska J.M., Pijning T., Grijpstra P., Kralj S., Kamerling J.P., Dijkhuizen L., 4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Appl. Microbiol. Biotechnol. 2013, 97, 181–193. https://doi.org/10.1007/s00253-012-3943-110.1007/s00253-012-3943-1Search in Google Scholar PubMed PubMed Central

[37] Xiang G., Buwalda P.L., van der Maarel M.J.E.C., Leemhuis H., The thermostable 4,6-α-glucanotransferase of Bacillus coagulans DSM 1 synthesizes isomaltooligosaccharides. Amylase 2021, 5, 13–22. https://doi.org/10.1515/amylase-2021-000210.1515/amylase-2021-0002Search in Google Scholar

[38] Gangoiti J., Pijning T., Dijkhuizen L., Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnol. Adv. 2018, 36, 196–207. https://doi.org/10.1016/j.biotechadv.2017.11.00110.1016/j.biotechadv.2017.11.001Search in Google Scholar PubMed

[39] Molina M., Cioci G., Moulis C., Severac E., Remaud-Simeon M., Bacterial α-glucan and branching sucrases from GH70 family: discovery, structure-function relationship studies and engineering. Microorganisms 2021, 9, 1607. https://doi.org/10.3390/microorganisms908160710.3390/microorganisms9081607Search in Google Scholar PubMed PubMed Central

[40] Li X., Meng X., de Leeuw T.C., Te Poele E.M., Pijning T., Dijkhuizen L., Liu W., Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Crit. Rev. Food Sci. Nutr. 2021, 15, 1–21. https://doi.org/10.1080/10408398.2021.201659810.1080/10408398.2021.2016598Search in Google Scholar PubMed

[41] Przylas I., Tomoo K., Terada Y., Takaha T., Fujii K., Saenger W., Sträter N., Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. J. Mol. Biol. 2000, 296, 873–886. https://doi.org/10.1006/jmbi.1999.350310.1006/jmbi.1999.3503Search in Google Scholar PubMed

[42] Kaper T., Leemhuis H., Uitdehaag J.C., van der Veen B.A., Dijkstra B.W., van der Maarel M.J., Dijkhuizen L., Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8. Biochemistry 2007, 46, 5261–5269. https://doi.org/10.1021/bi602408j10.1021/bi602408jSearch in Google Scholar PubMed

[43] Jung J.H., Jung T.Y., Seo D.H., Yoon S.M., Choi H.C., Park B.C., Park C.S., Woo E.J., Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus. Proteins 2011, 79, 633–644. https://doi.org/10.1002/prot.2291110.1002/prot.22911Search in Google Scholar PubMed

[44] Kuchtova A,, Janecek S., In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. Biochim. Biophys. Acta 2015, 1854, 1260–1268. https://doi.org/10.1016/j.bbapap.2015.05.00910.1016/j.bbapap.2015.05.009Search in Google Scholar PubMed

[45] Marecek F., Møller M.S., Svensson B., Janecek S., A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021, 11, 229. https://doi.org/10.1007/s13205-021-02787-810.1007/s13205-021-02787-8Search in Google Scholar PubMed PubMed Central

[46] Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M., Henrissat B., Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 2006, 19, 555–562. https://doi.org/10.1093/protein/gzl04410.1093/protein/gzl044Search in Google Scholar PubMed

[47] Puspasari F., Radjasa O.K., Noer A.S., Nurachman Z., Syah Y.M., van der Maarel M., Dijkhuizen L., Janecek S., Natalia D., Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J. Appl. Microbiol. 2013, 114, 108–120. https://doi.org/10.1111/jam.1202510.1111/jam.12025Search in Google Scholar PubMed

[48] Janecek S., Kuchtova A., Petrovicova S., A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia 2015, 70, 1284–1294. https://doi.org/10.1515/biolog-2015-016510.1515/biolog-2015-0165Search in Google Scholar

[49] Sarian F.D., Janecek S., Pijning T., Ihsanawati, Nurachman Z., Radjasa O.K., Dijkhuizen L., Natalia D., van der Maarel M.J., A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Sci. Rep. 2017, 7, 44230. https://doi.org/10.1038/srep4423010.1038/srep44230Search in Google Scholar PubMed PubMed Central

[50] Oslancova A., Janecek S., Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci. 2002, 59, 1945–1959. https://doi.org/10.1007/pl0001251710.1007/PL00012517Search in Google Scholar

[51] Park K.H., Kim T.J., Cheong T.K., Kim J.W., Oh B.H., Svensson B., Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta 2000, 1478, 165–185. https://doi.org/10.1016/s0167-4838(00)00041-810.1016/S0167-4838(00)00041-8Search in Google Scholar

[52] Majzlova K., Pukajova Z., Janecek S., Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr. Res. 2013, 367, 48–57. https://doi.org/10.1016/j.carres.2012.11.02210.1016/j.carres.2012.11.022Search in Google Scholar

[53] Kuchtova A., Janecek S., Domain evolution in enzymes of the neopullulanase subfamily. Microbiology 2016, 162, 2099–2115. https://doi.org/10.1099/mic.0.00039010.1099/mic.0.000390Search in Google Scholar

[54] Matsuura Y., Kusunoki M., Harada W., Kakudo M., Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 1984, 95, 697–702. https://doi.org/10.1093/oxfordjournals.jbchem.a13465910.1093/oxfordjournals.jbchem.a134659Search in Google Scholar

[55] Buisson G., Duee E., Haser R., Payan F., Three dimensional structure of porcine pancreatic α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J. 1987, 6, 3909–3916. https://doi.org/10.1002/j.1460-2075.1987.tb02731.x10.1002/j.1460-2075.1987.tb02731.xSearch in Google Scholar

[56] Kadziola A., Abe J., Svensson B., Haser R., Crystal and molecular structure of barley α-amylase. J. Mol. Biol. 1994, 239, 104–121. https://doi.org/10.1006/jmbi.199410.1006/jmbi.1994.1354Search in Google Scholar

[57] Vujicic-Zagar A., Pijning T., Kralj S., Lopez C.A., Eeuwema W., Dijkhuizen L., Dijkstra B.W., Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc. Natl. Acad. Sci. USA 2010, 107, 21406–21411. https://doi.org/10.1073/pnas.100753110710.1073/pnas.1007531107Search in Google Scholar

[58] Svensson B., Tovborg Jensen M., Mori H., Bak-Jensen K.S., Bønsager B., Nielsen P.K., Kramhøft B., Prætorius-Ibba M., Nøhr J., Juge N., Greffe L., Williamson G., Driguez H., Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 2002, 57 (Suppl. 11), 5–19.Search in Google Scholar

[59] Janecek S., How many conserved sequence regions are there in the α-amylase family? Biologia 2002, 57 (Suppl. 11), 29–41.Search in Google Scholar

[60] van der Maarel M.J., van der Veen B., Uitdehaag J.C., Leemhuis H., Dijkhuizen L., Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155. https://doi.org/10.1016/s0168-1656(01)00407-210.1016/S0168-1656(01)00407-2Search in Google Scholar

[61] MacGregor E.A., An overview of clan GH-H and distantly-related families. Biologia 2005, 60 (Suppl. 16), 5–12.Search in Google Scholar

[62] Møller M.S., Henriksen A., Svensson B., Structure and function of α-glucan debranching enzymes. Cell. Mol. Life Sci. 2016, 73, 2619–2641. https://doi.org/10.1007/s00018-016-2241-y10.1007/s00018-016-2241-ySearch in Google Scholar

[63] Bozic N., Loncar N., Slavic M.S., Vujcic Z., Raw starch degrading α-amylases: an unsolved riddle. Amylase 2017, 1, 12–25. https://doi.org/10.1515/amylase-2017-000210.1515/amylase-2017-0002Search in Google Scholar

[64] MacGregor E.A., Jespersen H.M., Svensson B., A circularly permuted α-amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996, 378, 263–236. https://doi.org/10.1016/0014-5793(95)01428-410.1016/0014-5793(95)01428-4Search in Google Scholar

[65] Gangoiti J., Pijning T., Dijkhuizen L., The Exiguobacterium sibiricum 255-15 GtfC enzyme represents a novel glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. Appl. Environ. Microbiol. 2015, 82, 756–766. https://doi.org/10.1128/AEM.03420-1510.1128/AEM.03420-15Search in Google Scholar PubMed PubMed Central

[66] Janecek S., Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur. J. Biochem. 1994, 224, 519–524. https://doi.org/10.1111/j.1432-1033.1994.00519.x10.1111/j.1432-1033.1994.00519.xSearch in Google Scholar PubMed

[67] Janecek S., Leveque E., Belarbi A., Haye B., Close evolutionary relatedness of α-amylases from Archaea and plants. J. Mol. Evol. 1999, 48, 421–426. https://doi.org/10.1007/pl0000648610.1007/PL00006486Search in Google Scholar

[68] Da Lage J.L., Feller G., Janecek S., Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the α-amylase model. Cell. Mol. Life Sci. 2004, 61, 97–109. https://doi.org/10.1007/s00018-003-3334-y10.1007/s00018-003-3334-ySearch in Google Scholar PubMed

[69] Hostinova E., Janecek S., Gasperik J., Gene sequence, bioinformatics and enzymatic characterization of α-amylase from Saccharomycopsis fibuligera KZ. Protein J. 2010, 29, 355–364. https://doi.org/10.1007/s10930-010-9260-610.1007/s10930-010-9260-6Search in Google Scholar PubMed

[70] Tagomori B.Y., Dos Santos F.C., Barbosa-Tessmann I.P., Recombinant expression, purification, and characterization of an α-amylase from Massilia timonae. 3 Biotech 2021, 11, 13. https://doi.org/10.1007/s13205-020-02505-w10.1007/s13205-020-02505-wSearch in Google Scholar PubMed PubMed Central

[71] Li C., Du M., Cheng B., Wang L., Liu X., Ma C., Yang C., Xu P., Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications. Biotechnol Biofuels 2014, 7, 18. https://doi.org/10.1186/1754-6834-7-1810.1186/1754-6834-7-18Search in Google Scholar PubMed PubMed Central

[72] Janecek S., Zamocka B., A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2020, 24, 207–217. https://doi.org/10.1007/s00792-019-01147-y10.1007/s00792-019-01147-ySearch in Google Scholar PubMed

[73] van der Kaaij R.M., Janecek S., van der Maarel M.J.E.C., Dijkhuizen L., Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 2007, 153, 4003–4015. https://doi.org/10.1099/mic.0.2007/008607-010.1099/mic.0.2007/008607-0Search in Google Scholar PubMed

[74] Da Lage J.L., Binder M., Hua-Van A., Janecek S., Casane D., Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evol. Biol. 2013, 13, 40. https://doi.org/10.1186/1471-2148-13-4010.1186/1471-2148-13-40Search in Google Scholar PubMed PubMed Central

[75] Janickova Z., Janecek S., Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships. Int. J. Biol. Macromol. 2020, 159, 763–772. https://doi.org/10.1016/j.ijbiomac.2020.05.06910.1016/j.ijbiomac.2020.05.069Search in Google Scholar

[76] Janickova Z., Janecek S., In silico analysis of fungal and chloride-dependent α-amylases within the family GH13 with identification of possible secondary surface-binding sites. Molecules 2021, 26, 5704. https://doi.org/10.3390/molecules2618570410.3390/molecules26185704Search in Google Scholar

[77] Janecek S., Svensson B., Henrissat B., Domain evolution in the α-amylase family. J. Mol. Evol. 1997, 45, 322–331. https://doi.org/10.1007/pl0000623610.1007/PL00006236Search in Google Scholar

[78] Gabrisko M., Janecek S., Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 α-amylase family. FEBS J. 2009, 276, 7265–7278. https://doi.org/10.1111/j.1742-4658.2009.07434.x10.1111/j.1742-4658.2009.07434.xSearch in Google Scholar

[79] Fort J., de la Ballina L.R., Burghardt H.E., Ferrer-Costa C., Turnay J., Ferrer-Orta C., Uson I., Zorzano A., Fernandez-Recio J., Orozco M., Lizarbe M.A., Fita I., Palacin M., The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J. Biol. Chem. 2007, 282, 31444–31452. https://doi.org/10.1074/jbc.M70452420010.1074/jbc.M704524200Search in Google Scholar

[80] Wu D., Grund T.N., Welsch S., Mills D.J., Michel M., Safarian S., Michel H., Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proc. Natl. Acad. Sci. USA 2020, 117, 21281–21287. https://doi.org/10.1073/pnas.200811111710.1073/pnas.2008111117Search in Google Scholar

[81] Fairweather S.J., Shah N., Brӧer S., Heteromeric solute carriers: function, structure, pathology and pharmacology. Adv. Exp. Med. Biol. 2021, 21, 13–127. https://doi.org/10.1007/5584_2020_58410.1007/5584_2020_584Search in Google Scholar

[82] Fort J., Nicolas-Arago A., Palacin M., The ectodomains of rBAT and 4F2hc are fake or orphan α-glucosidases. Molecules 2021, 26, 6231. https://doi.org/10.3390/molecules2620623110.3390/molecules26206231Search in Google Scholar

[83] Fukusumi S., Kamizono A., Horinouchi S., Beppu T., Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur. J. Biochem. 1988, 174, 15–21. https://doi.org/10.1111/j.1432-1033.1988.tb14056.x10.1111/j.1432-1033.1988.tb14056.xSearch in Google Scholar

[84] Laderman K.A., Asada K., Uemori T., Mukai H., Taguchi Y., Kato I., Anfinsen C.B., α-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J. Biol. Chem. 1993, 268, 24402–24407. https://doi.org/10.1016/S0021-9258(20)80539-010.1016/S0021-9258(20)80539-0Search in Google Scholar

[85] Janecek S., Sequence of archaeal Methanococcus jannaschii α-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol. 1998, 43, 123–128. https://doi.org/10.1007/BF0281649610.1007/BF02816496Search in Google Scholar

[86] Imamura H., Fushinobu S., Yamamoto M., Kumasaka T., Jeon B.S., Wakagi T., Matsuzawa H., Crystal structures of 4-α-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J. Biol. Chem. 2003, 278, 19378–19386. https://doi.org/10.1074/jbc.M21313420010.1074/jbc.M213134200Search in Google Scholar

[87] Imamura H., Fushinobu S., Jeon B.S., Wakagi T., Matsuzawa H., Identification of the catalytic residue of Thermococcus litoralis 4-α-glucanotransferase through mechanism-based labeling. Biochemistry 2001, 40, 12400–12406. https://doi.org/10.1021/bi011017c10.1021/bi011017cSearch in Google Scholar

[88] Zona R., Chang-Pi-Hin F., O’Donohue M.J., Janecek S., Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur. J. Biochem. 2004, 271, 2863–2872. https://doi.org/10.1111/j.1432-1033.2004.04144.x10.1111/j.1432-1033.2004.04144.xSearch in Google Scholar

[89] Palomo M., Pijning T., Booiman T., Dobruchowska J.M., van der Vlist J., Kralj S., Planas A., Loos K., Kamerling J.P., Dijkstra B.W., van der Maarel M.J., Dijkhuizen L., Leemhuis H., Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. J. Biol. Chem. 2011, 286, 3520-3530. https://doi.org/10.1074/jbc.M110.17951510.1074/jbc.M110.179515Search in Google Scholar

[90] Blesak K., Janecek S., Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 2012, 16, 497–506. https://doi.org/10.1007/s00792-012-0449-910.1007/s00792-012-0449-9Search in Google Scholar

[91] Blesak K., Janecek S., Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. Microbiology 2013, 159, 2584–2593. https://doi.org/10.1099/mic.0.071084-010.1099/mic.0.071084-0Search in Google Scholar

[92] Martinovicova M., Janecek S., In silico analysis of the α-amylase family GH57: eventual subfamilies reflecting enzyme specificities. 3 Biotech 2018, 8, 307. https://doi.org/10.1007/s13205-018-1325-910.1007/s13205-018-1325-9Search in Google Scholar

[93] Laderman K.A., Davis B.R., Krutzsch H.C., Lewis M.S., Griko Y.V., Privalov P.L., Anfinsen C.B., The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 1993, 268, 24394–24401. https://doi.org/10.1016/S0021-9258(20)80538-910.1016/S0021-9258(20)80538-9Search in Google Scholar

[94] Nakajima M., Imamura H., Shoun H., Horinouchi S., Wakagi T., Transglycosylation activity of Dictyoglomus thermophilum amylase A. Biosci. Biotechnol. Biochem. 2004, 68, 2369–2373. https://doi.org/10.1271/bbb.68.236910.1271/bbb.68.2369Search in Google Scholar PubMed

[95] Kim J.W., Flowers L.O., Whiteley M., Peeples T.L., Biochemical confirmation and characterization of the family-57-like α-amylase of Methanococcus jannaschii. Folia Microbiol. 2001, 46, 467–473. https://doi.org/10.1007/BF0281798810.1007/BF02817988Search in Google Scholar PubMed

[96] Ballschmiter M., Fütterer O., Liebl W., Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 2006, 72, 2206–2211. https://doi.org/10.1128/AEM.72.3.2206-2211.200610.1128/AEM.72.3.2206-2211.2006Search in Google Scholar PubMed PubMed Central

[97] Dickmanns A., Ballschmiter M., Liebl W., Ficner R., Structure of the novel α-amylase AmyC from Thermotoga maritima. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 262–270. https://doi.org/10.1107/S09074449050413610.1107/S0907444905041363Search in Google Scholar

[98] Zhang X., Leemhuis H., Janecek S., Martinovicova M., Pijning T., van der Maarel M.J.E.C., Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity. Appl. Microbiol. Biotechnol. 2019, 103, 6141–6151. https://doi.org/10.1007/s00253-019-09938-110.1007/s00253-019-09938-1Search in Google Scholar PubMed PubMed Central

[99] Xiang G., Leemhuis H., van der Maarel M.J.E.C., Structural elements determining the transglycosylating activity of glycoside hydrolase family 57 glycogen branching enzymes. Proteins 2021, in press. https://doi.org/10.1002/prot.2620010.1002/prot.26200Search in Google Scholar PubMed

[100] Li X., Li D., Park K.H., An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Appl. Microbiol. Biotechnol. 2013, 97, 5359–5369. https://doi.org/10.1007/s00253-012-4397-110.1007/s00253-012-4397-1Search in Google Scholar PubMed

[101] Janecek S., Blesak K., Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. Protein J. 2011, 30, 429–435. https://doi.org/10.1007/s10930-011-9348-710.1007/s10930-011-9348-7Search in Google Scholar PubMed

[102] Janecek S., Martinovicova M., New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases. Genetica 2020, 148, 77–86. https://doi.org/10.1007/s10709-020-00089-010.1007/s10709-020-00089-0Search in Google Scholar PubMed

[103] Watanabe H., Nishimoto T., Kubota M., Chaen H., Fukuda S., Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an α-amylase from a Bacillus circulans strain. Biosci. Biotechnol. Biochem. 2006, 70, 2690–2702. https://doi.org/10.1271/bbb.6029410.1271/bbb.60294Search in Google Scholar PubMed

[104] Valk V., van der Kaaij R.M., Dijkhuizen L., The evolutionary origin and possible functional roles of FNIII domains in two Microbacterium aurum B8.A granular starch degrading enzymes, and in other carbohydrate acting enzymes. Amylase 2017, 1, 1–11. https://doi.org/10.1515/amylase-2017-000110.1515/amylase-2017-0001Search in Google Scholar

[105] Nakada T., Maruta K., Mitsuzumi H., Kubota M., Chaen H., Sugimoto T., Kurimoto M., Tsujisaka Y., Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 1995, 59, 2215–2218. https://doi.org/10.1271/bbb.59.221510.1271/bbb.59.2215Search in Google Scholar PubMed

[106] Janecek S., Kuchtova A., In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57. FEBS Lett. 2012, 586, 3360–3366. https://doi.org/10.1016/j.febslet.2012.07.02010.1016/j.febslet.2012.07.020Search in Google Scholar

[107] Ficko-Blean E., Stuart C.P., Boraston A.B., Structural analysis of CPF_2247, a novel α-amylase from Clostridium perfringens. Proteins 2011, 79, 2771–2777. https://doi.org/10.1002/prot.2311610.1002/prot.23116Search in Google Scholar

[108] Aleshin A., Golubev A., Firsov L.M., Honzatko R.B., Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-Å resolution. J. Biol. Chem. 1992, 267, 19291–19298. https://doi.org/10.1016/S0021-9258(18)41773-510.1016/S0021-9258(18)41773-5Search in Google Scholar

[109] Aleshin A.E., Feng P.H., Honzatko R.B., Reilly P.J., Crystal structure and evolution of a prokaryotic glucoamylase. J. Mol. Biol. 2003, 327, 61–73. https://doi.org/10.1016/s0022-2836(03)00084-610.1016/S0022-2836(03)00084-6Search in Google Scholar

[110] Sauer J., Sigurskjold B.W., Christensen U., Frandsen T.P., Mirgorodskaya E., Harrison M., Roepstorff P., Svensson B., Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta 2000, 1543, 275-293. https://doi.org/10.1016/s0167-4838(00)00232-610.1016/S0167-4838(00)00232-6Search in Google Scholar

[111] Guerin D.M., Lascombe M.B., Costabel M., Souchon H., Lamzin V., Beguin P., Alzari P.M., Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate. J. Mol. Biol. 2002, 316, 1061–1069. https://doi.org/10.1006/jmbi.2001.540410.1006/jmbi.2001.5404Search in Google Scholar

[112] Guimaraes B.G., Souchon H., Lytle B.L., David Wu J.H., Alzari P.M., The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J. Mol. Biol. 2002, 320, 587–596. https://doi.org/10.1016/s0022-2836(02)00497-710.1016/S0022-2836(02)00497-7Search in Google Scholar

[113] Wu H., Qiao S., Li D., Guo L., Zhu M., Ma L.Z., Crystal structure of the glycoside hydrolase PssZ from Listeria monocytogenes. Acta Crystallogr. F Struct. Biol. Commun. 2019, 75, 501–506. https://doi.org/10.1107/S2053230X1900810010.1107/S2053230X19008100Search in Google Scholar PubMed PubMed Central

[114] Köseoglu V.K., Heiss C., Azadi P., Topchiy E., Güvener Z.T., Lehmann T.E., Miller K.W., Gomelsky M., Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol. Microbiol. 2015, 96, 728–743. https://doi.org/10.1111/mmi.1296610.1111/mmi.12966Search in Google Scholar PubMed

[115] Kerenyiova L., Janecek S., A detailed in silico analysis of the amylolytic family GH126 and its possible relatedness to family GH76. Carbohydr Res. 2020, 494, 108082. https://doi.org/10.1016/j.carres.2020.10808210.1016/j.carres.2020.108082Search in Google Scholar PubMed

[116] Kerenyiova L., Janecek S., Extension of the taxonomic coverage of the family GH126 outside Firmicutes and in silico characterization of its non-catalytic terminal domains. 3 Biotech 2020, 10, 420. https://doi.org/10.1007/s13205-020-02415-x10.1007/s13205-020-02415-xSearch in Google Scholar PubMed PubMed Central

[117] Thompson A.J., Speciale G., Iglesias-Fernandez J., Hakki Z., Belz T., Cartmell A., Spears R.J., Chandler E., Temple M.J., Stepper J., Gilbert H.J., Rovira C., Williams S.J., Davies G.J., Evidence for a boat conformation at the transition state of GH76 α-1,6-mannanases – key enzymes in bacterial and fungal mannoprotein metabolism. Angew. Chem. Int. Ed. Engl. 2015, 54, 5378–5382. https://doi.org/10.1002/anie.20141050210.1002/anie.201410502Search in Google Scholar PubMed

Received: 2021-11-15
Accepted: 2022-01-03
Published Online: 2022-01-17

© 2022 Štefan Janeček et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/amylase-2022-0001/html
Scroll to top button