Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 28, 2023

On Caputo tempered implicit fractional differential equations in b-metric spaces

  • Abdelkrim Salim ORCID logo EMAIL logo , Salim Krim , Jamal Eddine Lazreg and Mouffak Benchohra
From the journal Analysis

Abstract

This paper deals with the existence and uniqueness results for a class of problems for nonlinear Caputo tempered implicit fractional differential equations in b-metric spaces with initial and nonlocal conditions. The arguments are based on some fixed point theorems. Furthermore, two illustrations are presented to demonstrate the plausibility of our results.

MSC 2010: 26A33; 34A08; 34K37

References

[1] S. Abbas, M. Benchohra, J. R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter Ser. Nonlinear Anal. Appl. 26, De Gruyter, Berlin, 2018. 10.1515/9783110553819Search in Google Scholar

[2] S. Abbas, M. Benchohra and G. M. N’Guérékata, Topics in Fractional Differential Equations, Dev. Math. 27, Springer, New York, 2012. 10.1007/978-1-4614-4036-9Search in Google Scholar

[3] S. Abbas, M. Benchohra and G. M. N’Guerekata, Advanced Fractional Differential and Integral Equations, Math. Res. Dev., Nova Science, New York, 2015. Search in Google Scholar

[4] R. S. Adiguzel, U. Aksoy, E. Karapinar and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. (2020), 10.1002/mma.6652. 10.1002/mma.6652Search in Google Scholar

[5] R. S. Adiguzel, U. Aksoy, E. Karapinar and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), 313–333. Search in Google Scholar

[6] H. Afshari, H. Aydi and E. Karapınar, On generalized α-ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), no. 1, 9–21. 10.1515/gmj-2017-0063Search in Google Scholar

[7] R. Almeida and M. L. Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math. 361 (2019), 1–12. 10.1016/j.cam.2019.04.010Search in Google Scholar

[8] B. Alqahtani, A. Fulga, F. Jarad and E. Karapınar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel, Chaos Solitons Fractals 128 (2019), 349–354. 10.1016/j.chaos.2019.08.002Search in Google Scholar

[9] M. Benchohra, F. Bouazzaoui, E. Karapinar and A. Salim, Controllability of second order functional random differential equations with delay, Math. 10 (2022), Paper No. 1120. 10.3390/math10071120Search in Google Scholar

[10] N. Benkhettou, K. Aissani, A. Salim, M. Benchohra and C. Tunc, Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), no. 1, 79–94. Search in Google Scholar

[11] R. G. Buschman, Decomposition of an integral operator by use of Mikusiński calculus, SIAM J. Math. Anal. 3 (1972), 83–85. 10.1137/0503010Search in Google Scholar

[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5–11. Search in Google Scholar

[13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263–276. Search in Google Scholar

[14] C. Derbazi, H. Hammouche, A. Salim and M. Benchohra, Measure of noncompactness and fractional hybrid differential equations with hybrid conditions, Differ. Equ. Appl. 14 (2022), no. 2, 145–161. 10.7153/dea-2022-14-09Search in Google Scholar

[15] A. Heris, A. Salim, M. Benchohra and E. Karapinar, Fractional partial random differential equations with infinite delay, Res. Phys. (2022), 10.1016/j.rinp.2022.105557. 10.1016/j.rinp.2022.105557Search in Google Scholar

[16] E. Karapinar and C. Chifu, Results in wt-distance over b-metric spaces, Math. 8 (2020), Paper No. 220. 10.3390/math8020220Search in Google Scholar

[17] E. Karapinar and A. Fulga, Fixed point on convex b-metric space via admissible mappings, TWMS J. Pure Appl. Math. 12 (2021), no. 2, 254–264. Search in Google Scholar

[18] E. Karapinar, A. Fulga and A. Petrusel, On Istratescu type contractions in b-metric spaces, Math. 8 (2020), no. 3, 10.3390/math8030388. 10.3390/math8030388Search in Google Scholar

[19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Search in Google Scholar

[20] S. Krim, S. Abbas, M. Benchohra and E. Karapinar, Terminal value problem for implicit Katugampola fractional differential equations in b-metric spaces, J. Funct. Spaces 2021 (2021), Article ID 5535178. 10.1155/2021/5535178Search in Google Scholar

[21] N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad and M. Benchohra, On implicit fractional q-difference equations: Analysis and stability, Math. Methods Appl. Sci. 45 (2022), no. 17, 10775–10797. 10.1002/mma.8417Search in Google Scholar

[22] C. Li, W. Deng and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional differential equations, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 4, 1989–2015. 10.3934/dcdsb.2019026Search in Google Scholar

[23] M. Medveď and E. Brestovanská, Differential equations with tempered Ψ-Caputo fractional derivative, Math. Model. Anal. 26 (2021), no. 4, 631–650. 10.3846/mma.2021.13252Search in Google Scholar

[24] N. A. Obeidat and D. E. Bentil, New theories and applications of tempered fractional differential equations, Nonlinear Dyn. 105 (2021), 1689–1702. 10.1007/s11071-021-06628-4Search in Google Scholar

[25] M. D. Ortigueira, G. Bengochea and J. T. Machado, Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron, Math. Methods Appl. Sci. 44 (2021), no. 11, 9191–9209. 10.1002/mma.7343Search in Google Scholar

[26] S. G. Ozyurt, On some ζ-admissible contraction mappings on Branciari b-metric spaces, Adv. Theor. Nonl. Anal. Appl. 1 (2017), 1–13. 10.31197/atnaa.318445Search in Google Scholar

[27] F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14–28. 10.1016/j.jcp.2014.04.024Search in Google Scholar PubMed PubMed Central

[28] A. Salim, S. Abbas, M. Benchohra and E. Karapinar, Global stability results for Volterra–Hadamard random partial fractional integral equations, Rend. Circ. Mat. Palermo (2) (2022), 10.1007/s12215-022-00770-7. 10.1007/s12215-022-00770-7Search in Google Scholar

[29] A. Salim, M. Benchohra, J. R. Graef and J. E. Lazreg, Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl. 24 (2022), no. 1, Paper No. 7. 10.1007/s11784-021-00920-xSearch in Google Scholar

[30] A. Salim, J. E. Lazreg, B. Ahmad, M. Benchohra and J. J. Nieto, A study on k-generalized ψ-Hilfer derivative operator, Vietnam J. Math. (2022), 10.1007/s10013-022-00561-8. 10.1007/s10013-022-00561-8Search in Google Scholar

[31] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1987. Search in Google Scholar

[32] R. Sevinik-Adıgüzel, Ü. Aksoy, E. Karapınar and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 155. 10.1007/s13398-021-01095-3Search in Google Scholar

[33] B. Shiri, G.-C. Wu and D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math. 156 (2020), 385–395. 10.1016/j.apnum.2020.05.007Search in Google Scholar

Received: 2022-11-05
Revised: 2023-01-16
Accepted: 2023-01-22
Published Online: 2023-02-28
Published in Print: 2023-05-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/anly-2022-1114/html
Scroll to top button