Skip to main content
Log in

Identification and expression analyses of two lotus (Nelumbo nucifera) dehydrin genes in response to adverse temperatures, ABA and IAA treatments

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs) play imperative role in the stress tolerance of high plants. In this study, the YSK2-type DHN (NnDHNl) and SK3-type DHN (NnDHN2) were investigated. The putative NnDHN1 and NnDNH2 shared conserved S-segment as well as K-segment, with distinct isoelectric points, kinase selectivities and number of functional motifs. Phylogenetic analysis revealed that NnDHNs were grouped with YnSKn- and SKn-type of DHNs in high plants. Additionally, NnDHN1 mRNA was only expressed in leaves and embryo. NnDHN2 mRNA was found in embryo, leaves, rhizome and leafstalk. NnDHNs mRNAs were not detected in root of N. nucifera. Real-time PCR assay demonstrated that the levels of NnDHN1 and NnDHN2 mRNAs were significantly elevated during cold temperature, while both were relatively stable in response to high temperature. Moreover, NnDHN2 mRNA was significantly increased after treatment with abscisic acid (ABA) or indole-3-acetic acid (IAA), while NnDHN1 mRNA was induced by ABA treatment with little change in response to IAA. These results illustrate two NnDHNs with partially overlapping function which exhibit different stress responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsheikh M.K., Svensson J. & Randall S.K. 2005. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ. 28: 1114–1122.

    Article  CAS  Google Scholar 

  • Babic M., Radie S., Cvjetko P., Roje V., Pevalek-Kozlina B. & Pavlica M. 2009. Antioxidative response of Lemna minor plants exposed to thallium (I)-acetate. Aquatic Bot. 91. 166–172.

    Article  CAS  Google Scholar 

  • Bies-Etheve N., Gaubier-Comella P., Debures A., Lasserre E., Jobet E., Raynal M., Cooke R. & Delseny M. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant. Mol. Biol. 67: 107–124.

    Article  CAS  Google Scholar 

  • Brini F., Yamamoto A., Jlaiel L., Takeda S., Hobo T., Dinh H.Q., Hattori T., Masmoudi K. & Hanin M. 2011. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol. 52: 676–688.

    Article  CAS  Google Scholar 

  • Dong C., Zheng X., Diao Y., Wang Y., Zhou M. & Hu Z. 2015. Molecular cloning and expression analysis of a catalase gene (NnCAT) from Nelumbo nucifera. Appl. Biochem. Biotechnol. 177: 1216–1228.

    Article  CAS  Google Scholar 

  • Eriksson S.K., Kutzer M., Procek J., Grobner G. & Harryson P. 2011. Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23: 2391–2404.

    Article  CAS  Google Scholar 

  • Hara M., Shinoda Y., Tanaka Y. & Kuboi T. 2009. DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 32: 532–541.

    Article  CAS  Google Scholar 

  • Hughes S. & Graether S.P. 2011. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci. 20: 42–50.

    Article  CAS  Google Scholar 

  • Hundertmark M. & Hincha D.K. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9. 118.

    Article  Google Scholar 

  • Hundertmark M., Buitink J., Leprince O. & Hincha D.K. 2011. Reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Sci. Res. 21: 165–173.

    Article  CAS  Google Scholar 

  • Kim S.Y. & Nam K.H. 2010. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 29: 203–209.

    Article  CAS  Google Scholar 

  • Koag M.C., Wilkens S., Fenton R.D., Resnik J., Vo E. & Close T.J. 2009. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant. Physiol. 150: 1503–1514.

    Article  CAS  Google Scholar 

  • Lescot M., Dehais P., Thijs G., Marchai K., Moreau Y., Van de peer Y., Rouze P. & Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325–327.

    Article  CAS  Google Scholar 

  • Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method. Methods (San Diego, Calif). 25: 402–408.

    Article  CAS  Google Scholar 

  • Peng Y., Reyes J.L., Wei H., Yang Y., Karlson D., Covarrubias A.A., Krebs S.L., Fessehaie A. & Arora R. 2008. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol. Plant. 134. 583–597.

    Article  CAS  Google Scholar 

  • Priestley D.A. & Posthumus M.A. 1982. Extreme longevity of lotus seeds from Pulantien. Nature 299: 148–149.

    Article  Google Scholar 

  • Riera M., Figueras M., Lopez C., Goday A. & Pages M. 2004. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rabl7 from maize. Proc. Natl. Acad. Sci. USA 101: 9879–9884.

    Article  CAS  Google Scholar 

  • Shekhawat U.K., Srinivas L & Ganapathi T.R. 2011. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234. 915.

    Article  CAS  Google Scholar 

  • Shen-Miller J., Lindner P., Xie Y., Villa S., Wooding K., Clarke S.G., Loo R.R. & Loo J.A. 2013. Thermalstable proteins of fruit of long-living sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Tropical. Plant. Biol. 6: 69–84.

    Article  CAS  Google Scholar 

  • Sridhar K.R. & Bhat R. 2007. Lotus-A potential nutraceutical source. J. Agric. Technol. 3: 143–145.

    Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Vaseva I.I., Anders I., Yuperlieva-Mateeva B., Nenkova R., Kostadinova A. & Feller U. 2014a. Dehydrin expression as a potential diagnostic tool for cold stress in white clover. Plant. Physiol. Biochem. 78: 43–48.

    Article  CAS  Google Scholar 

  • Vaseva I.I., Anders I. & Feller U. 2014b. Identification and expression of different dehydrin subclasses involved in drought response of Trifolium, repens. J. Plant. Physiol. 171: 213–224.

    Article  CAS  Google Scholar 

  • Wang X., Zhu H., Jin G., Liu H., Wu W. & Zhu J. 2007. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant. Sci. 172: 414–420.

    Article  CAS  Google Scholar 

  • Xu J., Zhang Y., Guan Z., Wei W., Han L. & Chai T. 2008. Expression and function of two dehydrins under environmental stresses in Brassica juncea L. Mol. Breeding 21: 431–438.

    Article  CAS  Google Scholar 

  • Xu Y. & Crouch J. 2008. Marker-assisted selection in plant breeding: from publi-cations to practice. Crop Sci. 48: 391–407.

    Article  Google Scholar 

  • Yamasaki Y., Koehler G., Blacklock B.J. & Randall S.K. 2013. Dehydrin expression in soybean. Plant Physiol. Biochem. 70: 213–220.

    Article  CAS  Google Scholar 

  • Yang Y., He M., Zhu Z., Li S., Xu Y., Zhang C., Singer S.D. & Wang Y. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12. 140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Yang, M., Wang, H. et al. Identification and expression analyses of two lotus (Nelumbo nucifera) dehydrin genes in response to adverse temperatures, ABA and IAA treatments. Biologia 72, 745–752 (2017). https://doi.org/10.1515/biolog-2017-0080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0080

Key words

Navigation