Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 21, 2017

Littlewood–Richardson coefficients for Grothendieck polynomials from integrability

  • Michael Wheeler EMAIL logo and Paul Zinn-Justin

Abstract

We study the Littlewood–Richardson coefficients of double Grothendieck polynomials indexed by Grassmannian permutations. Geometrically, these are the structure constants of the equivariant K-theory ring of Grassmannians. Representing the double Grothendieck polynomials as partition functions of an integrable vertex model, we use its Yang–Baxter equation to derive a series of product rules for the former polynomials and their duals. The Littlewood–Richardson coefficients that arise can all be expressed in terms of puzzles without gashes, which generalize previous puzzles obtained by Knutson–Tao and Vakil.

Award Identifier / Grant number: DE160100958

Award Identifier / Grant number: DP140102201

Award Identifier / Grant number: FT150100232

Award Identifier / Grant number: LIC 278124

Funding statement: MW is supported by the ARC grant DE160100958 and the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS). PZJ is supported by ERC grant “LIC” 278124, ARC grants DP140102201 and FT150100232.

References

[1] D. Anderson, S. Griffeth and E. Miller, Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 1, 57–84. 10.4171/JEMS/244Search in Google Scholar

[2] A. Buch, A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37–78. 10.1007/BF02392644Search in Google Scholar

[3] I. Coskun and R. Vakil, Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus, Algebraic geometry. Part 1 (Seattle 2005), Proc. Sympos. Pure Math. 80, American Mathematical Society, Providence (2009), 77–124. 10.1090/pspum/080.1/2483933Search in Google Scholar

[4] J. de Gier and B. Nienhuis, Integrability of the square-triangle random tiling model, Phys. Rev. E (3) 55 (1997), no. 4, 3926–3933. 10.1103/PhysRevE.55.3926Search in Google Scholar

[5] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221–260. 10.1215/S0012-7094-03-11922-5Search in Google Scholar

[6] A. Knutson, T. Tao and C. Woodward, The honeycomb model of GLn() tensor products. II: Puzzles determine facets of the Littlewood–Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19–48. 10.1090/S0894-0347-03-00441-7Search in Google Scholar

[7] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633. Search in Google Scholar

[8] C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67–82. 10.1007/PL00001276Search in Google Scholar

[9] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London, Ser. A 233 (1934), 99–141. 10.1098/rsta.1934.0015Search in Google Scholar

[10] A. I. Molev and B. E. Sagan, A Littlewood–Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4429–4443. 10.1090/S0002-9947-99-02381-8Search in Google Scholar

[11] K. Motegi and K. Sakai, Vertex models, TASEP and Grothendieck polynomials, J. Phys. A 46 (2013), no. 35, Article ID 355201. 10.1088/1751-8113/46/35/355201Search in Google Scholar

[12] K. Motegi and K. Sakai, K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A 47 (2014), no. 44, Article ID 445202. 10.1088/1751-8113/47/44/445202Search in Google Scholar

[13] O. Pechenik and A. Yong, Equivariant K-theory of Grassmannians II: The Knutson–Vakil conjecture, Compos. Math. 153 (2017), no. 4, 667–677. 10.1112/S0010437X16008186Search in Google Scholar

[14] K. Purbhoo, Puzzles, tableaux, and mosaics, J. Algebraic Combin. 28 (2008), no. 4, 461–480. 10.1007/s10801-007-0110-3Search in Google Scholar

[15] N. Y. Reshetikhin, A new exactly solvable case of an O(n)-model on a hexagonal lattice, J. Phys. A 24 (1991), no. 10, 2387–2396. 10.1088/0305-4470/24/10/023Search in Google Scholar

[16] G. D. B. Robinson, On the representations of the symmetric group, Amer. J. Math. 60 (1938), no. 3, 745–760. 10.2307/2371609Search in Google Scholar

[17] M.-P. Schützenberger, La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Strasbourg 1976), Lecture Notes in Math. 579, Springer, Berlin (1977), 59–113. 10.1007/BFb0090012Search in Google Scholar

[18] G. P. Thomas, Baxter algebras and Schur functions Ph.D. thesis, University College of Swansea, 1975. Search in Google Scholar

[19] R. Vakil, A geometric Littlewood–Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–421. 10.4007/annals.2006.164.371Search in Google Scholar

[20] M. Wheeler and P. Zinn-Justin, Hall polynomials, inverse Kostka polynomials and puzzles, preprint (2016), http://arxiv.org/abs/1603.01815. 10.1016/j.jcta.2018.05.005Search in Google Scholar

[21] M. Wheeler and P. Zinn-Justin, Refined Cauchy/Littlewood identities and six-vertex model partition functions. III: Deformed bosons, Adv. Math. 299 (2016), 543–600. 10.1016/j.aim.2016.05.010Search in Google Scholar

[22] P. Zinn-Justin, Littlewood–Richardson coefficients and integrable tilings, Electron. J. Combin. 16 (2009), Research Paper 12. 10.37236/101Search in Google Scholar

[23] P. Zinn-Justin, Puzzle viewer v2.4, http://www.lpthe.jussieu.fr/~pzinn/puzzles/. Search in Google Scholar

[24] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=2&y1=2,2&y1comp&y2=2,1&y2comp&Kinv&mask=35&view=9&intens=0.25&processSearch in Google Scholar

[25] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=3&y1=2&y2=1&y3=3,1&y3comp&K&equiv&mask=35&intens=0.25&processSearch in Google Scholar

[26] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=3&y1=2&y2=2,1&y3=3,2&y3comp&K&equiv&mask=35&intens=0.25&processSearch in Google Scholar

[27] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=3&y1=3,2&y2=3,1&y3=2&y1comp&y2comp&Kinv&equiv&mask=35&view=9&intens=0.25&processSearch in Google Scholar

[28] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=3&y1=1,1&y2&y3=2,2&y4=3,1&y3comp&y4comp&K&equiv&mask=35&intens=0.25&processSearch in Google Scholar

[29] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=2&width=2&y1=1&y3=1&y2comp&K&equiv&mask=35&intens=0.25&processSearch in Google Scholar

[30] http://www.lpthe.jussieu.fr/~pzinn/puzzles/?height=5&width=5&y1=1&y2=2,1&y3=2,1,1&y3comp&K&equiv&mask=35&intens=0.25&processSearch in Google Scholar

Received: 2016-11-21
Revised: 2017-08-14
Published Online: 2017-09-21
Published in Print: 2019-12-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2017-0033/html
Scroll to top button