Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2018

Towards the Development of THz-Sensors for the Detection of African Trypanosomes

  • Robert Knieß EMAIL logo , Carolin B. Wagner , H. Ulrich Göringer , Mario Mueh EMAIL logo , Christian Damm , Simon Sawallich , Bartos Chmielak , Ulrich Plachetka and Max Lemme
From the journal Frequenz

Abstract

Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) for which adequate therapeutic and diagnostic measures are still lacking. Causative agent of HAT is the African trypanosome, a single-cell parasite, which propagates in the blood and cerebrospinal fluid of infected patients. Although different testing methods for the pathogen exist, none is robust, reliable and cost-efficient enough to support large-scale screening and control programs. Here we propose the design of a new sensor-type for the detection of infective-stage trypanosomes. The sensor exploits the highly selective binding capacity of nucleic acid aptamers to the surface of the parasite in combination with passive sensor structures to allow an electromagnetic remote read-out using terahertz (THz)-radiation. The short wavelength provides a superior interaction with the parasite cells than longer wavelengths, which is essential for a high sensitivity. We present two different sensor structures using both, micro- and nano-scale elements, as well as different measurement principles.

PACS: 87.85.fk

Acknowledgements

The authors would like to acknowledge funding of the APTERA project (GO 516/7-1, DA 1275/5-1, KU 540/54-1) by the German Research Foundation within the national priority program SPP 1857 ESSENCE. The support by CST AG / 3DS Simulia regarding Microwave Studio products, as well as the competent cooperation with Protemics GmbH for the THz near-field inspection setup are highly appreciated.

References

WHO fact sheet no. 259 (03/2014). [Online]. Available: http://www.who.int/mediacentre/factsheets/fs259/en/.Search in Google Scholar

K. Stuart, R. Brun, S. Croft, A. Fairlamb, R. E. Gürtler, J. McKerrow, S. Reed and R. Tarleton, “Kinetoplastids: related protozoan pathogens, different diseases,” J. Clin. Invest., vol. 118, no. 4, pp. 1301–1310, 2008.10.1172/JCI33945Search in Google Scholar

S. E. Osborne and A. D. Ellington, “Nucleic acid selection and the challenge of combinatorial chemistry,” Chem. Rev., vol. 97, no. 2, pp. 349–370, 1997.10.1021/cr960009cSearch in Google Scholar

R. R. Breaker, “In vitro selection of catalytic polynucleotides,” Chem. Rev., vol. 97, no. 2, pp. 371–390, 1997.10.1021/cr960008kSearch in Google Scholar

M. Famulok, G. Mayer and M. Blind, “Nucleic acid aptamers from selection in vitro to applications in vivo,” Acc. Chem. Res., vol. 33, no. 9, pp. 591–599, 2000.10.1021/ar960167qSearch in Google Scholar

L. B. McGown, M. J. Joseph, J. B. Pitner, G. P. Vonk and G. P. Vonk, “The nucleic acid ligand,” Anal. Chem., vol. 67, no. 21, pp. 663A–668A, 1995.10.1021/ac00117a726Search in Google Scholar

L. Gold, B. Polisky, O. Uhlenbeck and M. Yarus, “Diversity of oligonucleotide functions,” Annu. Rev. Biochem., vol. 64, no. 1, pp. 763–797, 1995.10.1146/annurev.bi.64.070195.003555Search in Google Scholar

A. D. Ellington and R. Conrad, “Aptamers as potential nucleic acid pharmaceuticals,” Biotechnol. Annu. Rev., vol. 1, pp. 185–214, 1995.10.1016/S1387-2656(08)70052-8Search in Google Scholar

E. J. Cho, J.-W Lee. and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem., vol. 2, pp. 241–264, 2009.10.1146/annurev.anchem.1.031207.112851Search in Google Scholar PubMed

I. Willner and M. Zayats, “Electronic aptamer-based sensors,” Angew. Chem. Int. Ed., vol. 46, no. 34, pp. 6408–6418, 2007.10.1002/anie.200604524Search in Google Scholar PubMed

G. A. Zelada-Guillén, J. Riu, A. Düzgün and F. X. Rius, “Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor,” Angew. Chem. Int. Ed., vol. 48, no. 40, pp. 7334–7337, 2009.10.1002/anie.200902090Search in Google Scholar PubMed

P. Hong, W. Li and J. Li, “Applications of aptasensors in clinical diagnostics,” Sensors, vol. 12, no. 2, pp. 1181–1193, 2012.10.3390/s120201181Search in Google Scholar PubMed PubMed Central

M. Lorger, M. Engstler, M. Homann and H. U. Göringer, “Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers,” Eukaryotic Cell, vol. 2, no. 1, pp. 84–94, 2003.10.1128/EC.2.1.84-94.2003Search in Google Scholar PubMed PubMed Central

M. Homann and H. U. Göringer, “Combinatorial selection of high affinity RNA ligands to live African trypanosomes.” Nucleic Acids Res., vol. 27, no. 9, pp. 2006–2014, May 1999.10.1093/nar/27.9.2006Search in Google Scholar PubMed PubMed Central

M. Homann, M. Lorger, M. Engstler, M. Zacharias and H. U. Göringer, “Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes,” Comb. Chem. High Throughput Screening, vol. 9, no. 7, pp. 491–499, 2006.10.2174/138620706777935324Search in Google Scholar PubMed

H. U. Göringer, “Parasite-specific aptamers as biosynthetic reagents and potential pharmaceuticals,” Trends in Parasitology, vol. 28, no. 3, pp. 106–113, 2012.10.1016/j.pt.2011.12.005Search in Google Scholar PubMed

M. Mueh, M. Maasch, M. Brecht, H. U. Göringer and C. Damm, “Complex dielectric characterization of African trypanosomes for aptamer-based terahertz sensing applications,” in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), May 2017, pp. 1–4.10.1109/IMBIOC.2017.7965783Search in Google Scholar

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, p. 4184, 2000.10.1103/PhysRevLett.84.4184Search in Google Scholar PubMed

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett., vol. 95, no. 4, p. 043113, 2009.10.1063/1.3194154Search in Google Scholar

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett., vol. 95, no. 1, p. 011106, 2009.10.1063/1.3162336Search in Google Scholar

R. Yogi, R. Parolia, R. Karekar and R. Aiyer, “Microwave microstrip ring resonator as a paper moisture sensor: Study with different grammage,” Meas. Sci. Technol., vol. 13, no. 10, p. 1558, 2002.10.1088/0957-0233/13/10/308Search in Google Scholar

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett., vol. 99, p. 147401, Oct 2007.10.1103/PhysRevLett.99.147401Search in Google Scholar PubMed

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch and W. Zhang, “The fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 6, pp. 820–826, Nov 2013.10.1109/TTHZ.2013.2285498Search in Google Scholar

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul and W. Zhang, “Ultrasensitive terahertz sensing with high-q fano resonances in metasurfaces,” Appl. Phys. Lett., vol. 105, no. 17, p. 171101, 2014.10.1063/1.4895595Search in Google Scholar

M. Mueh, M. Maasch, R. Knie, H. U. Göringer and C. Damm, “Detection of African trypanosomes using asymmetric double-split ring based THz sensors,” IEEE J. Electromagnet., RF Microwaves Med. Biol., vol. PP, no. 99, pp. 1–1, 2017.10.1109/JERM.2017.2771152Search in Google Scholar

F. Chappuis, L. Loutan, P. Simarro, V. Lejon and P. Büscher, “Options for field diagnosis of human African trypanosomiasis,” Clin. Microbiol. Rev., vol. 18, no. 1, pp. 133–146, 2005.10.1128/CMR.18.1.133-146.2005Search in Google Scholar PubMed PubMed Central

N. Inagaki, “Polymer films produced by plasma polymerization,” in Materials surface processing by directed energy techniques. Elsevier, 2006, pp. 659–707.10.1016/B978-008044496-3/50021-6Search in Google Scholar

M. Maasch, M. Mueh and C. Damm, “Sensor array on structured PET substrates for detection of thin dielectric layers at terahertz frequencies,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017.10.1109/MWSYM.2017.8058768Search in Google Scholar

A. Barranco, A. Borras, A. R. Gonzalez-Elipe and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater Sci., vol. 76s, pp. 59–153, 2016.10.1016/j.pmatsci.2015.06.003Search in Google Scholar

K. Sakai et al., Terahertz Optoelectron., vol. 6. Springer Berlin, 2005.10.1007/b80319Search in Google Scholar

M. Wächter, M. Nagel and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett., vol. 95, no. 4, p. 041112, 2009.10.1063/1.3189702Search in Google Scholar

H. Tao, W. J. Padilla, X. Zhang and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 1, pp. 92–101, 2011.10.1109/JSTQE.2010.2047847Search in Google Scholar

Received: 2018-1-5
Published Online: 2018-3-17
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2018-0011/html
Scroll to top button