Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 28, 2022

HEM11δ and HEM12δ-based Quad band Quad Sense Circularly Polarized tunable Graphene-based MIMO Dielectric Resonator Antenna

  • Patri Upender ORCID logo EMAIL logo and Amarjit Kumar ORCID logo
From the journal Frequenz

Abstract

In this paper, a two port circularly polarized (CP) MIMO Cylindrical Dielectric Resonator Antenna (CDRA) with Quad-band response is designed for terahertz (THz) applications. This antenna is new since MIMO DRA antennas in the THz frequency range have never been described before. Also, by the varying graphene potential of the antenna, isolation between the two antennas is increased and CP tuning can be achieved which is another unique feature of this proposed antenna at THz region. The proposed DRA generates two higher order modes (HEM11δ and HEM12δ). The 3 dB Axial Ratio Bandwidth (ARBW) of 8.22, 2.48, 3.67 and 5.67% is achieved at four resonant frequencies. Various MIMO performance parameters are evaluated and these parameters are within acceptable limits. Advantages of the proposed design are quad response, higher order modes generation, CP tuning and good isolation between the ports. The tunability of graphene material allows it to provide CP responses in the frequency region that is most useful in biomedical applications. The use of a CP antenna in a THz biomedical application can improve system sensitivity by reducing polarisation losses and aligning them. All these features make the proposed MIMO DRA potentially suitable for THz applications.


Corresponding author: Patri Upender, Department of Electronics and Communication, National Institute of Technology, Warangal, Telangana, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Y. He, Y. Chen, L. Zhang, S. Wong, and Z. N. Chen, “An overview of terahertz antennas,” China Commun., vol. 17, no. 7, pp. 124–165, 2020, https://doi.org/10.23919/J.CC.2020.07.011.Search in Google Scholar

[2] K. Ranjan Jha and G. Singh, “Terahertz planar antennas for future wireless communication: a technical review,” Infrared Phys. Technol., vol. 60, pp. 71–80, 2013. https://doi.org/10.1016/j.infrared.2013.03.009.Search in Google Scholar

[3] A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications-how to achieve sub-wavelength resolution at THz frequencies,” J. Infrared, Millim. Terahertz Waves, vol. 32, pp. 976–1019, 2011.10.1007/s10762-011-9809-2Search in Google Scholar

[4] T. A. Milligan, Modern Antenna Design, 2nd ed. New Jersey, Wiley, 2005.10.1002/0471720615Search in Google Scholar

[5] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. John Wiley, 2005.Search in Google Scholar

[6] V. K. Varsha and S. J. Bhavana, “Terahertz antenna design for infrared energy harvesting applications," 2015 Radio and Antenna Days of the Indian Ocean (RADIO), Mauritius, Belle Mare, 2015, pp. 1–2, https://doi.org/10.1109/RADIO.2015.7323390.Search in Google Scholar

[7] R. H. Elabd, H. H. Abdullah, and M. Abdelazim, “Compact highly directive MIMO vivaldi antenna for 5G millimeter-wave base station,” J. Infrared, Millim. Terahertz Waves, vol. 42, pp. 173–194, 2021.10.1007/s10762-020-00765-4Search in Google Scholar

[8] P. Chen, C. Argyropoulos, and A. Alù, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag., vol. 61, no. 4, pp. 1528–1537, 2013, https://doi.org/10.1109/TAP.2012.2220327.Search in Google Scholar

[9] P. Upender and A. Kumar, “Quad-band circularly polarized tunable graphene based dielectric resonator antenna for terahertz applications,” Silicon, 2021, pp. 1–4. https://doi.org/10.1007/s12633-021-01336-5.Search in Google Scholar

[10] F. Alnemr, M. F. Ahmed, and A. A. Shaalan, “A compact 28/38 GHz MIMO circularly polarized antenna for 5 G applications,” J. Infrared, Millim. Terahertz Waves, vol. 42, pp. 338–355, 2021.10.1007/s10762-021-00770-1Search in Google Scholar

[11] M. Hrobak, K. Thurn, J. Moll, et al.., “A modular MIMO millimeter-wave imaging radar system for space applications and its components,” J. Infrared, Millim. Terahertz Waves, vol. 42, pp. 275–324, 2021.10.1007/s10762-020-00736-9Search in Google Scholar

[12] P. Ranjan and R. K. Gangwar, “Design and fabrication of high gain multi-element multi-segment quarter-sector cylindrical dielectric resonator antenna,” Frequenz, vol. 72, nos 1–2, pp. 15–25, 2018. https://doi.org/10.1515/freq-2016-0353.Search in Google Scholar

[13] P. Kumar, S. Dwari, S. Singh, and N. K. Agrawal, “Design investigation of a laminated waveguide fed multi-band DRA for military applications,” Frequenz, vol. 72, nos 1–2, pp. 7–14, 2018. https://doi.org/10.1515/freq-2016-0295.Search in Google Scholar

[14] G. Varshney, “Tunable terahertz dielectric resonator antenna,” Silicon, vol. 13, pp. 1907–1915, 2021. https://doi.org/10.1007/s12633-020-00577-0.Search in Google Scholar

[15] D. Sankaranarayanan, D. Venkata Kiran, and B. Mukherjee, “Laterally placed CDRA with triangular notches for ultra wideband applications,” Frequenz, vol. 72, nos no. 1–2, pp. 1–6, 2018. https://doi.org/10.1515/freq-2016-0294.Search in Google Scholar

[16] R. Gupta, G. Varshney, and R. S. Yaduvanshi, “Tunable terahertz circularly polarized dielectric resonator antenna,” Optik, vol. 239, 2021.10.1016/j.ijleo.2021.166800Search in Google Scholar

[17] Q.-Y. Guo and H. Wong, “155 GHz dual-polarized Fabry–Perot cavity antenna using LTCC-based feeding source and phase- shifting surface,” IEEE Trans. Antenn. Propag., vol. 69, no. 4, pp. 2347–2352, 2021, https://doi.org/10.1109/TAP.2020.3019528.Search in Google Scholar

[18] S. A. Long, M. W. Mcallister, and L. C. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antenn. Propag., vol. 31, no. 3, pp. 406–412, 1983, https://doi.org/10.1109/TAP.1983.1143080.Search in Google Scholar

[19] S. Li, S. Wang, Q. An, G. Zhao, and H. Sun, “Cylindrical MIMO array-based near-field Microwave imaging,” IEEE Trans. Antenn. Propag., vol. 69, no. 1, pp. 612–617, 2021, https://doi.org/10.1109/TAP.2020.3001438.Search in Google Scholar

[20] N. Yang and K. W. Leung, “Compact cylindrical pattern-diversity dielectric resonator antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 19, no. 1, pp. 19–23, 2020, https://doi.org/10.1109/LAWP.2019.2951633.Search in Google Scholar

[21] M. Alibakhshikenari, B. S. Virdee, A. A. Althuwayb, et al.., “Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THz integrated-circuit applications,” J. Infrared, Millim. Terahertz Waves, vol. 42, pp. 17–28, 2021.10.1007/s10762-020-00753-8Search in Google Scholar

[22] R. H. Elabd, H. H. Abdullah, and M. Abdelazim, “Compact highly directive MIMO vivaldi antenna for 5G millimeter-wave base station,” J. Infrared, Millim. Terahertz Waves, vol. 42, pp. 173–194, 2021.10.1007/s10762-020-00765-4Search in Google Scholar

[23] Z. Xu, X. Dong, and J. Bornemann, “Spectral efficiency of carbon nanotube antenna based MIMO systems in the terahertz band,” IEEE Wirel. Commun., vol. 2, no. 6, pp. 631–634, 2013, https://doi.org/10.1109/WCL.2013.090313.130366.Search in Google Scholar

[24] N. Khalid and O. B. Akan, “Experimental throughput analysis of low-THz MIMO communication channel in 5G wireless networks,” IEEE Wirel. Commun., vol. 5, no. 6, pp. 616–619, 2016, https://doi.org/10.1109/LWC.2016.2606392.Search in Google Scholar

[25] G. Varshney, S. Gotra, S. Chaturvedi, V. S. Pandey, and R. S. Yaduvanshi, “Compact four-port MIMO dielectric resonator antenna with pattern diversity,” IET Microwaves Antennas Propag., 2019, pp. 1–7.10.1049/iet-map.2018.5799Search in Google Scholar

[26] G. Das, A. Sharma, and R. K. Gangwar, “Dielectric resonator based circularly polarized MIMO antenna with polarization diversity,” Microw. Opt. Technol. Lett., vol. 60, pp. 685–693, 2018. https://doi.org/10.1002/mop.31033.Search in Google Scholar

[27] T. Kumari, G. Das, A. Sharma, and R. K. Gangwar, “Design approach for dual element hybrid MIMO antenna arrangement for wideband applications,” Int. J. RF Microw. Comput. Eng., vol. 29, 2019.10.1002/mmce.21486Search in Google Scholar

[28] S. K. K. Dash, T. Khan, and M. Borthakur, “Circularly polarized conical dielectric resonator antenna for X-band applications: an experimental study,” in 2017 47th European Microwave Conference (EuMC), Germany, Nuremberg, 2017, pp. 1281–1284, https://doi.org/10.23919/EuMC.2017.8231085.Search in Google Scholar

[29] M. F. Ali, R. Bhattacharya, and G. Varshney, “Graphene-based tunable terahertz self-diplexing/MIMO-STAR antenna with pattern diversity,” Nano Commun. Netw., vol. 30, 2021. https://doi.org/10.1016/j.nancom.2021.100378.Search in Google Scholar

[30] Q. Rubani, S. H. Gupta, and A. Rajawat, “A compact MIMO antenna for WBAN operating at Terahertz frequency,” Optik, vol. 207, 2020, Art no. 164447. https://doi.org/10.1016/j.ijleo.2020.164447.Search in Google Scholar

[31] G. Varshney, S. Debnath, and A. K. Sharma, “Tunable circularly polarized graphene antenna for THz applications,” Optik, vol. 223, 2020. https://doi.org/10.1016/j.ijleo.2020.165412.Search in Google Scholar

[32] T. Okan, “High efficiency unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems,” Optik, 2021, Art no. 166859. https://doi.org/10.1016/j.ijleo.2021.166859.Search in Google Scholar

[33] Q. Rubani, Gh. Rasool Begh, and S. H. Gupta, “Design and investigation of a MIMO nanoantenna operating at optical frequency,” Optik, vol. 223, no. 165481, 2020. https://doi.org/10.1016/j.ijleo.2020.165481.Search in Google Scholar

[34] G. Varshney, S. Gotra, V. S. Pandey, and R. S. Yaduvanshi, “Proximity-coupled two-port multi input-multi-output graphene antenna with pattern diversity for THz applications,” Nano Commun. Netw., vol. 21, no. 100246, 2019.10.1016/j.nancom.2019.05.003Search in Google Scholar

[35] S. Singhal, “Four arm windmill shaped superwideband terahertz MIMO fractal antenna,” Optik, vol. 219, 2020, Art no. 165093. https://doi.org/10.1016/j.ijleo.2020.165093.Search in Google Scholar

[36] Q. Zheng, C. Guo, and J. Ding, “Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application,” Microw. Opt. Technol. Lett., vol. 60, pp. 679–685, 2018. https://doi.org/10.1002/mop.31026.Search in Google Scholar

[37] Z. Xu, X. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communications based on graphene antennas,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 609–617, 2014, https://doi.org/10.1109/TTHZ.2014.2331496.Search in Google Scholar

[38] M. F. Ali, R. K. Singh, and R. Bhattacharya, “Re-configurable graphene-based two port dual-band and MIMO antenna for THz applications,” in 2020 IEEE Students Conference on Engineering & Systems (SCES), Prayagraj, India, 2020, pp. 1–5, https://doi.org/10.1109/SCES50439.2020.9236760.Search in Google Scholar

[39] S. Roslan, M. Kamarudin, M. Khalily, and M. Jamaluddin, “An mimo F-shaped dielectric resonator antenna for 4G applications,” Microw. Opt. Technol. Lett., vol. 57, no. 12, pp. 2931–2936, 2021. https://doi.org/10.1002/mop.29473.Search in Google Scholar

[40] U. Keshwala, K. Ray, and S. Rawat, “Ultra-wideband mushroom shaped half-sinusoidal antenna for THz applications,” Optik, vol. 228, 2021, Art no. 166156. https://doi.org/10.1016/j.ijleo.2020.166156.Search in Google Scholar

[41] K. M. Luk and K. W. Leung, Eds. Dielectric Resonant Antenna, Research Studies Press, 2003.Search in Google Scholar

[42] M. S. Sharawi, Printed MIMO Antenna Engineering, Norwood, MA, USA, Artech House, 2014.Search in Google Scholar

[43] Y. Yang, R. Liu, J. Wu, et al.., “Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach,” Sci. Rep., vol. 5, p. 13480, 2015.10.1038/srep13480Search in Google Scholar PubMed PubMed Central

[44] L. Tai, D. Zhu, X. Liu, et al.., “Direct growth of graphene on silicon by metalfree chemical vapor deposition,” Nano-Micro Lett., vol. 10, p. 20, 2018. https://doi.org/10.1007/s40820-017-0173-1.Search in Google Scholar PubMed PubMed Central

[45] F. Liang, Z. Yang, Y. Xie, H. Li, D. Zhao, and B. Wang, “Beam-scanning microstrip quasi-Yagi–Uda antenna based on hybrid metal-graphene materials,” IEEE Photon. Technol. Lett., vol. 30, no. 12, pp. 1127–1130, 2018, https://doi.org/10.1109/LPT.2018.2835840.Search in Google Scholar

[46] G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag., vol. 56, no. 3, pp. 747–757, 2008, https://doi.org/10.1109/TAP.2008.917005.Search in Google Scholar

Received: 2021-06-08
Accepted: 2022-01-13
Published Online: 2022-01-28
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2021-0145/html
Scroll to top button