Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

Wavelength-dependent photodegradation of wood and its effects on fluorescence

  • Frank B. Peters EMAIL logo and Andreas O. Rapp
From the journal Holzforschung

Abstract

Apart from some strongly fluorescent wood species, the general fluorescence of wood has long been ignored. Recent studies suggest that each species has a distinct fluorescence, originating from both basic components and characteristic extractives. However, wood colour and fluorescence rapidly change upon exposure to sunlight. In this study, 288 samples of Acer pseudoplatanus, Quercus robur, Picea abies and Juglans nigra were irradiated with different bands of ultraviolet (UV) and visible (VIS) light. Photosensitivity was examined in regards of colour, infrared absorbance (FTIR), and fluorescence imaging. UV light caused strong yellowing in all examined species, mostly correlating with lignin degradation, carbonyl formation and the appearance of a broad banded fluorescence emission. VIS light above 420 nm, however, caused different, partly contradicting effects in colour and fluorescence, and did not affect lignin. J. nigra proved to be most sensitive towards VIS-induced yellowing and bleaching. The main new finding of this study is that the native long wave fluorescence of wood was strongly decreased by VIS-irradiation above 510 nm wavelength in all samples. This effect was not species-specific, probably originating from a cross-species wood component. The results have potential impacts on non-destructive image-based evaluation methods and wood identification.


Corresponding author: Frank B. Peters, Institut für Berufswissenschaften im Bauwesen, Leibniz Universität Hannover, Herrenhäuser Str. 8, 30419 Hannover, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Antikainen, J., Hirvonen, T., Kinnunen, J., and Hauta-Kasari, M. (2012). Heartwood detection for Scotch pine by fluorescence image analysis. Holzforschung 66: 877–881, https://doi.org/10.1515/hf-2011-0131.Search in Google Scholar

Avella, T., Dechamps, R., and Bastin, M. (1988). Fluorescence study of 10,610 woody species from the Tervuren (Tw) Collection, Belgium. IAWA J. 9: 346–352, https://doi.org/10.1163/22941932-90001094.Search in Google Scholar

Baur, S.I. and Easteal, A.J. (2014). ESR studies on the free radical generation in wood by irradiation with selected sources from UV to IR wavelength regions. Holzforschung 68: 775–780, https://doi.org/10.1515/hf-2013-0185.Search in Google Scholar

Beyer, M., Müller, M., Scheiding, W., and Emmler, R. (2012). Grundlegende Untersuchungen zum Verhalten von Oberflächen aus Thermoholz und dunklen nativen Hölzern bei Bestrahlung. Holztechnologie 53: 18–23.Search in Google Scholar

Bianco, M.-A., Handaji, A., and Savolainen, H. (1998). Quantitative analysis of ellagic acid in hardwood samples. Sci. Total Environ. 222: 123–126, https://doi.org/10.1016/S0048-9697(98)00294-0.Search in Google Scholar

Bonifazi, G., Calienno, L., Capobianco, G., Lo Monaco, A., Pelosi, C., Picchio, R., and Serranti, S. (2015). Modeling color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging. Polym. Degrad. Stabil. 113: 10–21, https://doi.org/10.1016/j.polymdegradstab.2015.01.001.Search in Google Scholar

Burtin, P., Jay-Allemand, C., Charpentier, J.-P., and Janin, G. (1998). Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 × J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 12: 258–264, https://doi.org/10.1007/pl00009716.Search in Google Scholar

Burtin, P., Jay-Allemand, C., Charpentier, J.-P., and Janin, G. (2000). Modifications of hybrid walnut (Juglans nigra 23 × Juglans regia) wood colour and phenolic composition under various steaming conditions. Holzforschung 54: 33–38, https://doi.org/10.1515/hf.2000.006.Search in Google Scholar

Buschle-Diller, G. and Zeronian, S.H. (1993). Photodegradation of oxidized cotton cellulose. J. Appl. Polym. Sci. 47: 1319–1328, https://doi.org/10.1002/app.1993.070470802.Search in Google Scholar

Camorani, P., Badiali, M., Francomacaro, D., Gamassi, M., Piuri, V., Scotti, F., and Zanasi, M. (20082008). A classification method for wood types using fluorescence spectra. 2008 IEEE instrumentation and measurement technology conference. I2MTC 2008; Victoria, BC, Canada, 12–15 May 2008. IEEE Service Center, Piscataway, NJ, pp. 1312–1315.10.1109/IMTC.2008.4547245Search in Google Scholar

Castellan, A., Ruggiero, R., Frollini, E., Ramos, L.A., and Chirat, C. (2007). Studies on fluorescence of cellulosics. Holzforschung 61: 504–508, https://doi.org/10.1515/hf.2007.090.Search in Google Scholar

Chang, S.-T., Wang, S.-Y., and Cheng, S.-S. (2000). Environmental effects on the color of sugi (Cryptomeria japonica D. Don) heartwood. J. Wood Sci. 46: 390–394, https://doi.org/10.1007/bf00776402.Search in Google Scholar

Dehon, L., Macheix, J.J., and Durand, M. (2002). Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. J. Exp. Bot. 53: 303–311, https://doi.org/10.1093/jexbot/53.367.303.Search in Google Scholar PubMed

Derbyshire, H. and Miller, E.R. (1981). The photodegradation of wood during solar irradiation. Part 1-effects on the structural integrity of thin wood strips. Holz als Roh- Werkst. 39: 341–350, https://doi.org/10.1007/bf02608404.Search in Google Scholar

Derbyshire, H., Miller, E.R., and Turkulin, H. (1997). Investigations into the photodegradation of wood using microtensile testing. Part 3: the influence of temperature on photodegradation rates. Holz als Roh- Werkst. 55: 287–292, https://doi.org/10.1007/s001070050229.Search in Google Scholar

Desai, R.L. and Shields, J.A. (1969). Photochemical degradation of cellulose material. Makromol. Chem. 122: 134–144, https://doi.org/10.1002/macp.1969.021220111.Search in Google Scholar

Ding, Q., Han, W., Li, X., Jiang, Y., and Zhao, C. (2020). New insights into the autofluorescence properties of cellulose/nanocellulose. Sci. Rep. 10: 21387, https://doi.org/10.1038/s41598-020-78480-2.Search in Google Scholar PubMed PubMed Central

Donaldson, L. (2020). Autofluorescence in plants. Molecules 25: 2393, https://doi.org/10.3390/molecules25102393.Search in Google Scholar PubMed PubMed Central

Evans, P.D. (2013). Weathering of wood and wood composites. In: Rowell, R.M. (Ed.), Handbook of wood chemistry and wood composites, Vol. 2. CRC Press, Boca Raton, Fla, pp. 151–216.Search in Google Scholar

Evans, P.D., Urban, K., and Chowdhury, M.J.A. (2008). Surface checking of wood is increased by photodegradation caused by ultraviolet and visible light. Wood Sci. Technol. 42: 251, https://doi.org/10.1007/s00226-007-0175-0.Search in Google Scholar

Fengel, D. and Wegener, G. (2003). Wood: chemistry, ultrastructure, reactions. In: Reprint der Orig.-Ausg. Kessel Verlag, Remagen, pp. 345–370.10.1515/9783110839654Search in Google Scholar

Firouzjaei, R.A., Minaei, S., and Beheshti, B. (2018). Sweet lemon mechanical damage detection using image processing technique and UV radiation. J. Food Meas. Char. 12: 1513–1518, https://doi.org/10.1007/s11694-018-9766-8.Search in Google Scholar

Goble, P.G., Lead, J., Baker, A., Reynolds, D.M., and Spencer, R.G.M. (2014). Aquatic organic matter fluorescence. Cambridge University Press, Cambridge, pp. 303–338.Search in Google Scholar

Grönroos, P., Bessonoff, M., Salminen, K., Paltakari, J., and Kulmala, S. (2018). Phosphorescence and fluorescence of fibrillar cellulose films. Nord. Pulp Pap Res. J. 33: 246–255.10.1515/npprj-2018-3030Search in Google Scholar

Ho, K.-V., Roy, A., Foote, S., Vo, P.H., Lall, N., and Lin, C.-H. (2020). Profiling anticancer and antioxidant activities of phenolic compounds present in black walnuts (Juglans nigra) using a high-throughput screening approach. Molecules 25: 4516, https://doi.org/10.3390/molecules25194516.Search in Google Scholar

Hon, D.N.-S. and Minemura, N. (2001). Color and discoloration. In: Hon, D.N.-S. and Shiraishi, N. (Eds.), Wood and cellulosic chemistry, 2nd ed., rev. and expanded. ed. New York, NY: Dekker, pp. 385–442.10.1201/9781482269741-15Search in Google Scholar

Kalkan, H., Güneş, A., Durmuş, E., and Kuşçu, A. (2014). Non-invasive detection of aflatoxin-contaminated figs using fluorescence and multispectral imaging. Food Addit. Contam. A 31: 1414–1421, https://doi.org/10.1080/19440049.2014.926398.Search in Google Scholar

Kataoka, Y., Kiguchi, M., Williams, R.S., and Evans, P.D. (2007). Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61: 23–27, https://doi.org/10.1515/hf.2007.005.Search in Google Scholar

Khalid, A., Zhang, L., Tetienne, J.-P., Abraham, A.N., Poddar, A., Shukla, R., Shen, W., and Tomljenovic-Hanic, S. (2019). Intrinsic fluorescence from cellulose nanofibers and nanoparticles at cell friendly wavelengths. APL Photonics 4: 20803, https://doi.org/10.1063/1.5079883.Search in Google Scholar

Mao, L. and Ritcey, A.M. (1996). Excimer formation and excitation energy transfer in Langmuir-Blodgett films of cellulose derivatives containing carbazole. Thin Solid Films 284/285: 618–621, https://doi.org/10.1016/s0040-6090(95)08405-3.Search in Google Scholar

Miller, R.B. (1976). Wood anatomy and identification of species of Juglans. Bot. Gaz. 137: 368–377, https://doi.org/10.1086/336886.Search in Google Scholar

Miller, R.B. and Wiemann, M.C. (2006). Separation of ‘Dalbergia nigra’ from ‘Dalbergia spruceana’. Forest Products Lab., Madison, WI, pp. 12.10.2737/FPL-RP-632Search in Google Scholar

Mishra, G., Collings, D.A., and Altaner, C.M. (2018). Cell organelles and fluorescence of parenchyma cells in Eucalyptus bosistoana sapwood and heartwood investigated by microscopy. N. Z. J. For. Sci. 48: 13, https://doi.org/10.1186/s40490-018-0118-6.Search in Google Scholar

Mitsui, K. (2010). Acetylation of wood causes photobleaching. J. Photochem. Photobiol. B Biol. 101: 210–214, https://doi.org/10.1016/j.jphotobiol.2010.07.005.Search in Google Scholar

Miyawaki, A. and Sakurai, H. (2020). Comprehensive approaches using luminescence to studies of cellular functions. In: Make life visible. Springer OpenSpringer, ImprintSingapore, pp. 115–124.10.1007/978-981-13-7908-6_11Search in Google Scholar

Moya, R., Wiemann, M.C., and Olivares, C. (2013). Identification of endangered or threatened Costa Rican tree species by wood anatomy and fluorescence activity. Rev. Biol. Trop. 61: 1113–1156, https://doi.org/10.15517/rbt.v61i3.11909.Search in Google Scholar

Müller, U., Rätzsch, M., Schwanninger, M., Steiner, M., and Zöbl, H. (2003). Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B Biol. 69: 97–105.10.1016/S1011-1344(02)00412-8Search in Google Scholar

Nagai, A., Miller, J.B., Du, J., Kos, P., Stefan, M.C., and Siegwart, D.J. (2015). Biocompatible organic charge transfer complex nanoparticles based on a semi-crystalline cellulose template. Chem. Commun. 51: 11868–11871, https://doi.org/10.1039/c5cc03822g.Search in Google Scholar PubMed

Ou, Y. and Huang, Q. (2003). Study on the photo degradation of pulp mold container. J. Appl. Polym. Sci. 87: 2052–2056, https://doi.org/10.1002/app.11392.Search in Google Scholar

Pandey, K.K. and Chandrashekar, N. (2006). Photostability of wood surfaces esterified by benzoyl chloride. J. Appl. Polym. Sci. 99: 2367–2374.10.1002/app.22685Search in Google Scholar

Passauer, L., Prieto, J., Müller, M., Rössler, M., Schubert, J., and Beyer, M. (2015). Novel color stabilization concepts for decorative surfaces of native dark wood and thermally modified timber. Prog. Org. Coating 89: 314–322, https://doi.org/10.1016/j.porgcoat.2015.06.017.Search in Google Scholar

Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C., and Loose, M. (2002). Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89: 147–162, https://doi.org/10.1007/s00114-002-0309-z.Search in Google Scholar PubMed

Piuri, V. and Scotti, F. (2010). Design of an automatic wood types classification system by using fluorescence spectra. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 40: 358–366, https://doi.org/10.1109/tsmcc.2009.2039479.Search in Google Scholar

Prieto, J. and Kiene, J. (2019). Holzbeschichtung: Chemie und Praxis, 2 nd, ed. Vincentz Network GmbH & Co, Hannover.10.1515/9783748601746Search in Google Scholar

Rabek, J.F. (1996). Photodegradation of polymers: physical characteristics and applications, 1st ed. Berlin: Springer.10.1007/978-3-642-80090-0Search in Google Scholar

Rapp, A.O. (2018). Methoden der optischen Bauforensik für die Schimmelpilzdetektion. In: Kraus-Johnsen, I. (Ed.), Schimmelpilz-Handbuch. Praxiswissen zu Schimmelpilzschäden in Gebäuden: Mikrobiologie + Gesundheit, Bautechnik + Arbeitsschutz, Versicherung, Bewertung + Recht. Bundesanzeiger Verlag, Köln, pp. 177–212.Search in Google Scholar

Temiz, A., Terziev, N., Eikenes, M., and Hafren, J. (2007). Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 253: 5355–5362, https://doi.org/10.1016/j.apsusc.2006.12.005.Search in Google Scholar

Tokutomi, H., Takeda, T., Hoshino, N., and Akutagawa, T. (2018). Molecular structure of the photo-oxidation product of ellagic acid in solution. ACS Omega 3: 11179–11183, https://doi.org/10.1021/acsomega.8b01716.Search in Google Scholar PubMed PubMed Central

Tolvaj, L. and Faix, O. (1995). Artificial ageing of wood monitored by DRIFT spectroscopy and CIE lab color measurements. Holzforschung 49: 397–404, https://doi.org/10.1515/hfsg.1995.49.5.397.Search in Google Scholar

Turkulin, H., Derbyshire, H., and Miller, E.R. (2004). Investigations into the photodegradation of wood using microtensile testing. Part 5-the influence of moisture on photodegradation rates. Holz als Roh- Werkst. 62: 307–312, https://doi.org/10.1007/s00107-004-0493-y.Search in Google Scholar

Turkulin, H. and Živković, V. (2018). Microtensile testing of wood – influence of material properties, exposure and testing conditions on analysis of photodegradation. Drv. Ind. 69: 183–191, https://doi.org/10.5552/drind.2018.1757.Search in Google Scholar

Tylli, H., Forsskåhl, I., and Olkkonen, C. (1996). Photochromic behaviour of ozonated and photoirradiated cellulose studied by fluorescence spectroscopy. Cellulose 3: 203–215, https://doi.org/10.1007/bf02228802.Search in Google Scholar

Wheeler, E., Baas, P., and Gasson, P.E. (1989). IAWA list of microscopic features for hardwood identification. IAWA J. 10: 219–332.10.1163/22941932-90000496Search in Google Scholar

Ximenes, F.A. and Evans, P.D. (2006). Protection of wood using oxy-aluminium compounds. For. Prod. J. 56: 116–122.Search in Google Scholar

Živković, V., Arnold, M., Radmanović, K., Richter, K., and Turkulin, H. (2014). Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: colour changes in natural weathering. Wood Sci. Technol. 48: 239–252.10.1007/s00226-013-0601-4Search in Google Scholar

Received: 2021-05-25
Accepted: 2021-09-27
Published Online: 2021-11-16
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2021-0102/html
Scroll to top button