Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2018

Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization

  • Marek Orłowski ORCID logo EMAIL logo , Katarzyna Popławska , Joanna Pieprzyk , Aleksandra Szczygieł-Sommer , Anna Więch , Mirosław Zarębski , Aneta Tarczewska , Jurek Dobrucki and Andrzej Ożyhar
From the journal Biological Chemistry

Abstract

FK506-binding proteins (FKBPs) belong to a distinct class of immunophilins that interact with immunosuppressants. They use their peptidyl-prolyl isomerase (PPIase) activity to catalyze the cis-trans conversion of prolyl bonds in proteins during protein-folding events. FKBPs also act as a unique group of chaperones. The Drosophila melanogaster peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39) is thought to act as a transcriptional modulator of gene expression in 20-hydroxyecdysone and juvenile hormone signal transduction. The aim of this study was to analyze the molecular determinants responsible for the subcellular distribution of an FKBP39-yellow fluorescent protein (YFP) fusion construct (YFP-FKBP39). We found that YFP-FKBP39 was predominantly nucleolar. To identify the nuclear localization signal (NLS), a series of YFP-tagged FKBP39 deletion mutants were prepared and examined in vivo. The identified NLS signal is located in a basic domain. Detailed mutagenesis studies revealed that residues K188 and K191 are crucial for the nuclear targeting of FKBP39 and its nucleoplasmin-like (NPL) domain contains the sequence that controls the nucleolar-specific translocation of the protein. These results show that FKBP39 possesses a specific NLS in close proximity to a putative helix-turn-helix (HTH) motif and FKBP39 may bind DNA in vivo and in vitro.

Acknowledgments

This study was supported by National Science Centre grants [2012/05/B/NZ1/00659 and 2013/11/B/NZ3/00189] and partially supported by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology. The publication costs were provided by the Wrocław Centre of Biotechnology programme Leading National Research Centre (KNOW) from 2014 to 2018. We are grateful to Barbara Czuba-Pelech, Eng. (Jagiellonian University) and Mirosława Ostrowska, Eng. (Wrocław University of Science and Technology) for their excellent technical assistance.

References

Aravind, L. and Landsman, D. (1998). AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421.10.1093/nar/26.19.4413Search in Google Scholar PubMed PubMed Central

Aravind, L. and Koonin, E.V. (1999). DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 27, 4658–4670.10.1093/nar/27.23.4658Search in Google Scholar PubMed PubMed Central

Aravind, L., Anantharaman, V., Balaji, S., Babu, M.M., and Iyer, L.M. (2005). The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29, 231–262.10.1016/j.femsre.2004.12.008Search in Google Scholar PubMed

Banerjee, P.R., Mitrea, D.M., Kriwacki, R.W., and Deniz, A.A. (2016). Asymmetric modulation of protein order-disorder transitions by phosphorylation and partner binding. Angew. Chem. Int. Ed. 55, 1675–1679.10.1002/anie.201507728Search in Google Scholar PubMed PubMed Central

Barik, S. (1993). Site-directed mutagenesis by double polymerase chain reaction: megaprimer method. Methods Mol. Biol. 15, 277–286.10.1385/0-89603-244-2:277Search in Google Scholar

Barik, S. (1995). Site-directed mutagenesis by double polymerase chain reaction. Mol. Biotechnol. 3, 1–7.10.1007/BF02821329Search in Google Scholar PubMed

Barth, S., Nesper, J., Hasgall, P.A., Wirthner, R., Nytko, K.J., Edlich, F., Katschinski, D.M., Stiehl, D.P., Wenger, R.H., and Camenisch, G. (2007). The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol. Cell. Biol. 27, 3758–3768.10.1128/MCB.01324-06Search in Google Scholar PubMed PubMed Central

Barth, S., Edlich, F., Berchner-Pfannschmidt, U., Gneuss, S., Jahreis, G., Hasgall, P.A., Fandrey, J., Wenger, R.H., and Camenisch, G. (2009). Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J. Biol. Chem. 284, 23046–23058.10.1074/jbc.M109.032631Search in Google Scholar PubMed PubMed Central

Bernard, P., Ludbrook, L., Queipo, G., Dinulos, M.B., Kletter, G.B., Zhang, Y.H., Phelan, J.K., McCabe, E.R., Harley, V.R., and Vilain, E. (2006). A familial missense mutation in the hinge region of DAX1 associated with late-onset AHC in a prepubertal female. Mol. Genet. Metab. 88, 272–279.10.1016/j.ymgme.2005.12.004Search in Google Scholar PubMed

Boulon, S., Westman, B.J., Hutten, S., Boisvert, F.M., and Lamond, A.I. (2010). The nucleolus under stress. Mol. Cell 40, 216–227.10.1016/j.molcel.2010.09.024Search in Google Scholar PubMed PubMed Central

Brameier, M., Krings, A., and MacCallum, R.M. (2007). NucPred – predicting nuclear localization of proteins. Bioinformatics 23, 1159–1160.10.1093/bioinformatics/btm066Search in Google Scholar PubMed

Breiman, A. and Camus, I. (2002). The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res. 11, 321–335.10.1023/A:1016331814412Search in Google Scholar

Burns, K.A., Li, Y., Arao, Y., Petrovich, R.M., and Korach, K.S. (2011). Selective mutations in estrogen receptor alpha D-domain alters nuclear translocation and non-estrogen response element gene regulatory mechanisms. J. Biol. Chem. 286, 12640–12649.10.1074/jbc.M110.187773Search in Google Scholar PubMed PubMed Central

Cardenas, M.E., Zhu, D., and Heitman, J. (1995). Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr. Opin. Nephrol. Hypertens. 4, 472–477.10.1097/00041552-199511000-00002Search in Google Scholar PubMed

Carmo-Fonseca, M., Mendes-Soares, L., and Campos, I. (2000). To be or not to be in the nucleolus. Nat. Cell Biol. 2, E107–E112.10.1038/35014078Search in Google Scholar PubMed

Chen, H., Yong, W., Hinds, T.D. Jr, Yang, Z., Zhou, Y., Sanchez, E.R., and Shou, W. (2010). Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J. Biol. Chem. 285, 27776–27784.10.1074/jbc.M110.156091Search in Google Scholar PubMed PubMed Central

Cruz, M.C., Cavallo, L.M., Gorlach, J.M., Cox, G., Perfect, J.R., Cardenas, M.E., and Heitman, J. (1999). Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol. Cell. Biol. 19, 4101–4112.10.1128/MCB.19.6.4101Search in Google Scholar PubMed PubMed Central

Dang, C.V. and Lee, W.M. (1988). Identification of the human c-myc protein nuclear translocation signal. Mol. Cell. Biol. 8, 4048–4054.10.1128/mcb.8.10.4048-4054.1988Search in Google Scholar PubMed PubMed Central

Dingwall, C., Dilworth, S.M., Black, S.J., Kearsey, S.E., Cox, L.S., and Laskey, R.A. (1987). Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J. 6, 69–74.10.1002/j.1460-2075.1987.tb04720.xSearch in Google Scholar PubMed PubMed Central

Dodd, I.B. and Egan, J.B. (1988). The prediction of helix-turn-helix DNA-binding regions in proteins. A reply to Yudkin. Protein Eng. 2, 174–176.10.1093/protein/2.3.174Search in Google Scholar PubMed

Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.10.1093/bioinformatics/bti541Search in Google Scholar

Edlich-Muth, C., Artero, J.B., Callow, P., Przewloka, M.R., Watson, A.A., Zhang, W., Glover, D.M., Debski, J., Dadlez, M., Round, A.R., et al. (2015). The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. J. Mol. Biol. 427, 1949–1963.10.1016/j.jmb.2015.03.010Search in Google Scholar

Falvo, J.V., Thanos, D., and Maniatis, T. (1995). Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83, 1101–1111.10.1016/0092-8674(95)90137-XSearch in Google Scholar

Galat, A. (2003). Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity – targets – functions. Curr. Top. Med. Chem. 3, 1315–1347.10.2174/1568026033451862Search in Google Scholar PubMed

Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., and Piwien-Pilipuk, G. (2010). The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol. Cell. Biol. 30, 1285–1298.10.1128/MCB.01190-09Search in Google Scholar PubMed PubMed Central

Galigniana, N.M., Ballmer, L.T., Toneatto, J., Erlejman, A.G., Lagadari, M., and Galigniana, M.D. (2012). Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J. Neurochem. 122, 4–18.10.1111/j.1471-4159.2012.07775.xSearch in Google Scholar PubMed

Girard, F., Bello, B., Laemmli, U.K., and Gehring, W.J. (1998). In vivo analysis of scaffold-associated regions in Drosophila: a synthetic high-affinity SAR binding protein suppresses position effect variegation. EMBO J. 17, 2079–2085.10.1093/emboj/17.7.2079Search in Google Scholar PubMed PubMed Central

Goudarzi, K.M., Nister, M., and Lindstrom, M.S. (2014). mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer. Biol. Ther. 15, 1499–1514.10.4161/15384047.2014.955743Search in Google Scholar PubMed PubMed Central

Greb-Markiewicz, B., Orlowski, M., Dobrucki, J., and Ozyhar, A. (2011). Sequences that direct subcellular traffic of the Drosophila methoprene-tolerant protein (MET) are located predominantly in the PAS domains. Mol. Cell. Endocrinol. 345, 16–26.10.1016/j.mce.2011.06.035Search in Google Scholar PubMed

Gwozdz, T., Dutko-Gwozdz, J., Nieva, C., Betanska, K., Orlowski, M., Kowalska, A., Dobrucki, J., Spindler-Barth, M., Spindler, K.D., and Ozyhar, A. (2007). EcR and Usp, components of the ecdysteroid nuclear receptor complex, exhibit differential distribution of molecular determinants directing subcellular trafficking. Cell. Signal. 19, 490–503.10.1016/j.cellsig.2006.07.022Search in Google Scholar PubMed

Harding, M.W., Galat, A., Uehling, D.E., and Schreiber, S.L. (1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760.10.1038/341758a0Search in Google Scholar

Heitman, J., Movva, N.R., Hiestand, P.C., and Hall, M.N. (1991). FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 1948–1952.10.1073/pnas.88.5.1948Search in Google Scholar

Higgins, D.G., Thompson, J.D., and Gibson, T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383–402.10.1016/S0076-6879(96)66024-8Search in Google Scholar

Hingorani, K., Szebeni, A., and Olson, M.O. (2000). Mapping the functional domains of nucleolar protein B23. J. Biol. Chem. 275, 24451–24457.10.1074/jbc.M003278200Search in Google Scholar PubMed

Huang, S. and Houghton, P.J. (2002). Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr. Opin. Investig Drugs 3, 295–304.Search in Google Scholar

Ideno, A., Yoshida, T., Iida, T., Furutani, M., and Maruyama, T. (2001). FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins. Biochem. J. 357, 465–471.10.1042/bj3570465Search in Google Scholar

Jian, Y., Gao, Z., Sun, J., Shen, Q., Feng, F., Jing, Y., and Yang, C. (2009). RNA aptamers interfering with nucleophosmin oligomerization induce apoptosis of cancer cells. Oncogene 28, 4201–4211.10.1038/onc.2009.275Search in Google Scholar PubMed

Juhasz, G., Puskas, L.G., Komonyi, O., Erdi, B., Maroy, P., Neufeld, T.P., and Sass, M. (2007). Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ. 14, 1181–1190.10.1038/sj.cdd.4402123Search in Google Scholar PubMed PubMed Central

Kalderon, D., Richardson, W.D., Markham, A.F., and Smith, A.E. (1984). Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38.10.1038/311033a0Search in Google Scholar PubMed

Kang, C.B., Feng, L., Chia, J., and Yoon, H.S. (2005). Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2. Biochem. Biophys. Res. Commun. 337, 30–38.10.1016/j.bbrc.2005.09.023Search in Google Scholar PubMed

Kang, C.B., Hong, Y., Dhe-Paganon, S., and Yoon, H.S. (2008). FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16, 318–325.10.1159/000123041Search in Google Scholar PubMed

Kozlowska, M., Tarczewska, A., Jakob, M., Bystranowska, D., Taube, M., Kozak, M., Czarnocki-Cieciura, M., Dziembowski, A., Orlowski, M., Tkocz, K., et al. (2017). Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments. Sci. Rep. 7, 40405.10.1038/srep40405Search in Google Scholar PubMed PubMed Central

Kurek, I., Pirkl, F., Fischer, E., Buchner, J., and Breiman, A. (2002). Wheat FKBP73 functions in vitro as a molecular chaperone independently of its peptidyl prolyl cis-trans isomerase activity. Planta 215, 119–126.10.1007/s00425-001-0722-0Search in Google Scholar PubMed

Kuzuhara, T. and Horikoshi, M. (2004). A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat. Struct. Mol. Biol. 11, 275–283.10.1038/nsmb733Search in Google Scholar PubMed

Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282, 5101–5105.10.1074/jbc.R600026200Search in Google Scholar PubMed PubMed Central

Latt, S.A., Stetten, G., Juergens, L.A., Willard, H.F., and Scher, C.D. (1975). Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J. Histochem. Cytochem. 23, 493–505.10.1177/23.7.1095650Search in Google Scholar PubMed

Li, X., Romero, P., Rani, M., Dunker, A.K., and Obradovic, Z. (1999). Predicting protein disorder for N-, C-, and internal regions. Genome Inform. Ser. Workshop Genome Inform. 10, 30–40.Search in Google Scholar

Li, Y., Zhang, Z., Robinson, G.E., and Palli, S.R. (2007). Identification and characterization of a juvenile hormone response element and its binding proteins. J. Biol. Chem. 282, 37605–37617.10.1074/jbc.M704595200Search in Google Scholar PubMed PubMed Central

Lindstrom, M.S. (2011). NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem. Res. Int. 2011, 195209.10.1155/2011/195209Search in Google Scholar PubMed PubMed Central

Mattila, P.S., Ullman, K.S., Fiering, S., Emmel, E.A., McCutcheon, M., Crabtree, G.R., and Herzenberg, L.A. (1990). The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J. 9, 4425–4433.10.1002/j.1460-2075.1990.tb07893.xSearch in Google Scholar PubMed PubMed Central

Mitrea, D.M. and Kriwacki, R.W. (2012). Cryptic disorder: an order-disorder transformation regulates the function of nucleophosmin. Pac. Symp. Biocomput. 152–163.10.1142/9789814366496_0015Search in Google Scholar

Mitrea, D.M., Grace, C.R., Buljan, M., Yun, M.K., Pytel, N.J., Satumba, J., Nourse, A., Park, C.G., Madan Babu, M., White, S.W., et al. (2014). Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc. Natl. Acad. Sci. USA 111, 4466–4471.10.1073/pnas.1321007111Search in Google Scholar PubMed PubMed Central

Mitrea, D.M., Cika, J.A., Guy, C.S., Ban, D., Banerjee, P.R., Stanley, C.B., Nourse, A., Deniz, A.A., and Kriwacki, R.W. (2016). Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, e13571.10.7554/eLife.13571.042Search in Google Scholar

Monaghan, P. and Bell, A. (2005). A Plasmodium falciparum FK506-binding protein (FKBP) with peptidyl-prolyl cis-trans isomerase and chaperone activities. Mol. Biochem. Parasitol. 139, 185–195.10.1016/j.molbiopara.2004.10.007Search in Google Scholar

Musinova, Y.R., Lisitsyna, O.M., Golyshev, S.A., Tuzhikov, A.I., Polyakov, V.Y., and Sheval, E.V. (2011). Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochim. Biophys. Acta 1813, 27–38.10.1016/j.bbamcr.2010.11.003Search in Google Scholar

Nakai, K. and Horton, P. (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36.10.1016/S0968-0004(98)01336-XSearch in Google Scholar

Narasimhan, G., Bu, C., Gao, Y., Wang, X., Xu, N., and Mathee, K. (2002). Mining protein sequences for motifs. J. Comput. Biol. 9, 707–720.10.1089/106652702761034145Search in Google Scholar PubMed

Nelson, C.J., Santos-Rosa, H., and Kouzarides, T. (2006). Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126, 905–916.10.1016/j.cell.2006.07.026Search in Google Scholar PubMed

Nguyen Ba, A.N., Pogoutse, A., Provart, N., and Moses, A.M. (2009). NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformat. 10, 202-2105-10-202.10.1186/1471-2105-10-202Search in Google Scholar PubMed PubMed Central

Ni, L., Yang, C.S., Gioeli, D., Frierson, H., Toft, D.O., and Paschal, B.M. (2010). FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol. Cell. Biol. 30, 1243–1253.10.1128/MCB.01891-08Search in Google Scholar PubMed PubMed Central

Nieva, C., Gwozdz, T., Dutko-Gwozdz, J., Wiedenmann, J., Spindler-Barth, M., Wieczorek, E., Dobrucki, J., Dus, D., Henrich, V., Ozyhar, A., et al. (2005). Ultraspiracle promotes the nuclear localization of ecdysteroid receptor in mammalian cells. Biol. Chem. 386, 463–470.10.1515/BC.2005.055Search in Google Scholar PubMed

Njoh, K.L., Patterson, L.H., Zloh, M., Wiltshire, M., Fisher, J., Chappell, S., Ameer-Beg, S., Bai, Y., Matthews, D., Errington, R.J., et al. (2006). Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells. Cytometry A. 69, 805–814.10.1002/cyto.a.20308Search in Google Scholar PubMed

Ochocka, A.M., Kampanis, P., Nicol, S., Allende-Vega, N., Cox, M., Marcar, L., Milne, D., Fuller-Pace, F., and Meek, D. (2009). FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett. 583, 621–626.10.1016/j.febslet.2009.01.009Search in Google Scholar

Olson, M.O., Hingorani, K., and Szebeni, A. (2002). Conventional and nonconventional roles of the nucleolus. Int. Rev. Cytol. 219, 199–266.10.1016/S0074-7696(02)19014-0Search in Google Scholar

Onate, S.A., Prendergast, P., Wagner, J.P., Nissen, M., Reeves, R., Pettijohn, D.E., and Edwards, D.P. (1994). The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol. Cell. Biol. 14, 3376–3391.Search in Google Scholar

Pemberton, T.J. and Kay, J.E. (2005). Identification and comparative analysis of the peptidyl-prolyl cis/trans isomerase repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and S. pombe. Comp. Funct. Genomics 6, 277–300.10.1002/cfg.482Search in Google Scholar

Prakash, A., Shin, J., Rajan, S., and Yoon, H.S. (2016). Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin. Nucleic Acids Res. 44, 2909–2925.10.1093/nar/gkw001Search in Google Scholar

Quinta, H.R. and Galigniana, M.D. (2012). The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation. Br. J. Pharmacol. 166, 637–649.10.1111/j.1476-5381.2011.01783.xSearch in Google Scholar

Reeves, R. and Nissen, M.S. (1990). The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265, 8573–8582.10.1016/S0021-9258(19)38926-4Search in Google Scholar

Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Picard, D., and Smith, D.F. (2003). The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22, 1158–1167.10.1093/emboj/cdg108Search in Google Scholar

Riviere, S., Menez, A., and Galat, A. (1993). On the localization of FKBP25 in T-lymphocytes. FEBS Lett. 315, 247–251.10.1016/0014-5793(93)81173-WSearch in Google Scholar

Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J., and Dunker, A.K. (2001). Sequence complexity of disordered protein. Proteins 42, 38–48.10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3Search in Google Scholar

Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S.H. (1994). RAFT1: a mammalianprotein that binds to FKBP12 in a rapamycin-dependentfashion and is homologous to yeastTORs. Cell 78, 35–43.10.1016/0092-8674(94)90570-3Search in Google Scholar

Sangsuriya, P., Senapin, S., Huang, W.P., Lo, C.F., and Flegel, T.W. (2011). Co-interactive DNA-binding between a novel, immunophilin-like shrimp protein and VP15 nucleocapsid protein of white spot syndrome virus. PLoS One 6, e25420.10.1371/journal.pone.0025420Search in Google Scholar

Scott, M.S., Troshin, P.V., and Barton, G.J. (2011). NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics 12, 317-2105-12-317.10.1186/1471-2105-12-317Search in Google Scholar

Shaffer, P.L., McDonnell, D.P., and Gewirth, D.T. (2005). Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor. Biochemistry 44, 2678–2685.10.1021/bi0477182Search in Google Scholar

Somarelli, J.A., Coll, J.L., Velandia, A., Martinez, L., and Herrera, R.J. (2007). Characterization of immunophilins in the silkmoth Bombyx mori. Arch. Insect Biochem. Physiol. 65, 195–209.10.1002/arch.20177Search in Google Scholar

Somarelli, J.A., Lee, S.Y., Skolnick, J., and Herrera, R.J. (2008). Structure-based classification of 45 FK506-binding proteins. Proteins 72, 197–208.10.1002/prot.21908Search in Google Scholar

Song, Q., Alnemri, E.S., Litwack, G., and Gilbert, L.I. (1997). An immunophilin is a component of the insect ecdysone receptor (EcR) complex. Insect Biochem. Mol. Biol. 27, 973–982.10.1016/S0965-1748(97)00080-5Search in Google Scholar

Suzuki, R., Nagata, K., Yumoto, F., Kawakami, M., Nemoto, N., Furutani, M., Adachi, K., Maruyama, T., and Tanokura, M. (2003). Three-dimensional solution structure of an archaeal FKBP with a dual function of peptidyl prolyl cis-trans isomerase and chaperone-like activities. J. Mol. Biol. 328, 1149–1160.10.1016/S0022-2836(03)00379-6Search in Google Scholar

Swindells, M.B. (1995). Identification of a common fold in the replication terminator protein suggests a possible mode for DNA binding. Trends Biochem. Sci. 20, 300–302.10.1016/S0968-0004(00)89055-6Search in Google Scholar

Taneva, S.G., Munoz, I.G., Franco, G., Falces, J., Arregi, I., Muga, A., Montoya, G., Urbaneja, M.A., and Banuelos, S. (2008). Activation of nucleoplasmin, an oligomeric histone chaperone, challenges its stability. Biochemistry 47, 13897–13906.10.1021/bi800975rSearch in Google Scholar PubMed

Tanner, T.M., Denayer, S., Geverts, B., Van Tilborgh, N., Kerkhofs, S., Helsen, C., Spans, L., Dubois, V., Houtsmuller, A.B., Claessens, F., et al. (2010). A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell Mol. Life Sci. 67, 1919–1927.10.1007/s00018-010-0302-1Search in Google Scholar PubMed

Theopold, U., Dal Zotto, L., and Hultmark, D. (1995). FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene 156, 247–251.10.1016/0378-1119(95)00019-3Search in Google Scholar

Toniatti, C., Bujard, H., Cortese, R., and Ciliberto, G. (2004). Gene therapy progress and prospects: transcription regulatory systems. Gene Ther. 11, 649–657.10.1038/sj.gt.3302251Search in Google Scholar PubMed

Vandevyver, S., Dejager, L., and Libert, C. (2012). On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13, 364–374.10.1111/j.1600-0854.2011.01288.xSearch in Google Scholar PubMed

Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F., and Jones, D.T. (2004). The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139.10.1093/bioinformatics/bth195Search in Google Scholar PubMed

Wiederrecht, G.J., Sabers, C.J., Brunn, G.J., Martin, M.M., Dumont, F.J., and Abraham, R.T. (1995). Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog. Cell Cycle Res. 1, 53–71.10.1007/978-1-4615-1809-9_5Search in Google Scholar PubMed

Wojcik, K. and Dobrucki, J.W. (2008). Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells–influence on chromatin organization and histone-DNA interactions. Cytometry A 73, 555–562.10.1002/cyto.a.20573Search in Google Scholar PubMed

Wojcik, K., Zarebski, M., Cossarizza, A., and Dobrucki, J.W. (2013). Daunomycin, an antitumor DNA intercalator, influences histone-DNA interactions. Cancer Biol. Ther. 14, 823–832.10.4161/cbt.25328Search in Google Scholar PubMed PubMed Central

Xiao, H., Jackson, V., and Lei, M. (2006). The FK506-binding protein, Fpr4, is an acidic histone chaperone. FEBS Lett. 580, 4357–4364.10.1016/j.febslet.2006.06.093Search in Google Scholar PubMed

Yang, W.M., Inouye, C.J., and Seto, E. (1995). Cyclophilin A and FKBP12 interact with YY1 and alter its transcriptional activity. J. Biol. Chem. 270, 15187–15193.10.1074/jbc.270.25.15187Search in Google Scholar PubMed

Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformat. 9, 40-2105-9-40.10.1186/1471-2105-9-40Search in Google Scholar PubMed PubMed Central

Zoglowek, A., Orlowski, M., Pakula, S., Dutko-Gwozdz, J., Pajdzik, D., Gwozdz, T., Rymarczyk, G., Wieczorek, E., Dobrucki, J., Dobryszycki, P., et al. (2012). The composite nature of the interaction between nuclear receptors EcR and DHR38. Biol. Chem. 393, 457–471.10.1515/hsz-2011-0283Search in Google Scholar PubMed


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0251).


Received: 2017-09-25
Accepted: 2018-01-04
Published Online: 2018-01-12
Published in Print: 2018-04-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0251/html
Scroll to top button