Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 28, 2020

EZH2 function in immune cell development

  • Stephen L. Nutt ORCID logo EMAIL logo , Christine Keenan ORCID logo , Michaël Chopin and Rhys S. Allan
From the journal Biological Chemistry

Abstract

The polycomb repressive complex 2 (PRC2) consists of three core components EZH2, SUZ12 and EED. EZH2 catalyzes the methylation of lysine 27 of histone H3, a modification associated with gene silencing. Through gene duplication higher vertebrate genomes also encode a second partially redundant methyltransferase, EZH1. Within the mammalian immune system most research has concentrated on EZH2 which is expressed predominantly in proliferating cells. EZH2 and other PRC2 components are required for hematopoietic stem cell function and lymphocyte development, at least in part by repressing cell cycle inhibitors. At later stages of immune cell differentiation, EZH2 plays essential roles in humoral and cell-mediated adaptive immunity, as well as the maintenance of immune homeostasis. EZH2 is often overactive in cancers, through both gain-of-function mutations and over-expression, an observation that has led to the development and clinical testing of specific EZH2 inhibitors. Such inhibitors may also be of use in inflammatory and autoimmune settings, as EZH2 inhibition dampens the immune response. Here, we will review the current state of understanding of the roles for EZH2, and PRC2 more generally, in the development and function of the immune system.

Acknowledgments

This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1049307, 1125436, 1155342, Funder Id: http://dx.doi.org/10.13039/501100000925) and an American Asthma Foundation Senior Award.

  1. Conflict of interest statement: The authors declare no commercial or financial conflict of interest.

References

Arvey, A., van der Veeken, J., Samstein, R.M., Feng, Y., Stamatoyannopoulos, J.A., and Rudensky, A.Y. (2014). Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 15, 580–587.10.1038/ni.2868Search in Google Scholar PubMed PubMed Central

Ballare, C., Lange, M., Lapinaite, A., Martin, G.M., Morey, L., Pascual, G., Liefke, R., Simon, B., Shi, Y., Gozani, O., et al. (2012). Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat. Struct. Mol. Biol. 19, 1257–1265.10.1038/nsmb.2434Search in Google Scholar PubMed PubMed Central

Beguelin, W., Popovic, R., Teater, M., Jiang, Y., Bunting, K.L., Rosen, M., Shen, H., Yang, S.N., Wang, L., Ezponda, T., et al. (2013). EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692.10.1016/j.ccr.2013.04.011Search in Google Scholar PubMed PubMed Central

Beguelin, W., Teater, M., Gearhart, M.D., Calvo Fernandez, M.T., Goldstein, R.L., Cardenas, M.G., Hatzi, K., Rosen, M., Shen, H., Corcoran, C.M., et al. (2016). EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell 30, 197–213.10.1016/j.ccell.2016.07.006Search in Google Scholar PubMed PubMed Central

Beguelin, W., Rivas, M.A., Calvo Fernandez, M.T., Teater, M., Purwada, A., Redmond, D., Shen, H., Challman, M.F., Elemento, O., Singh, A., et al. (2017). EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat. Commun. 8, 877.10.1038/s41467-017-01029-xSearch in Google Scholar PubMed PubMed Central

Bugide, S., Green, M.R., and Wajapeyee, N. (2018). Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc. Natl. Acad. Sci. USA 115, E3509–E3518.10.1073/pnas.1802691115Search in Google Scholar PubMed PubMed Central

Caganova, M., Carrisi, C., Varano, G., Mainoldi, F., Zanardi, F., Germain, P.L., George, L., Alberghini, F., Ferrarini, L., Talukder, A.K., et al. (2013). Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest. 123, 5009–5022.10.1172/JCI70626Search in Google Scholar PubMed PubMed Central

Cai, L., Rothbart, S.B., Lu, R., Xu, B., Chen, W.Y., Tripathy, A., Rockowitz, S., Zheng, D., Patel, D.J., Allis, C.D., et al. (2013). An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582.10.1016/j.molcel.2012.11.026Search in Google Scholar PubMed PubMed Central

Chen, G., Subedi, K., Chakraborty, S., Sharov, A., Lu, J., Kim, J., Mi, X., Wersto, R., Sung, M.H., and Weng, N.P. (2018). Ezh2 regulates activation-induced CD8+ T cell cycle progression via repressing Cdkn2a and Cdkn1c expression. Front. Immunol. 9, 549.10.3389/fimmu.2018.00549Search in Google Scholar PubMed PubMed Central

Chen, X., Cao, G., Wu, J., Wang, X., Pan, Z., Gao, J., Tian, Q., Xu, L., Li, Z., Hao, Y., et al. (2019). The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell Mol. Immunol. Published online March 6, 2019. DOI: 10.1038/s41423-019-0219-2z.10.1038/s41423-019-0219-2zSearch in Google Scholar

Cooper, S., Dienstbier, M., Hassan, R., Schermelleh, L., Sharif, J., Blackledge, N.P., De Marco, V., Elderkin, S., Koseki, H., Klose, R., et al. (2014). Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7, 1456–1470.10.1016/j.celrep.2014.04.012Search in Google Scholar PubMed PubMed Central

Cretney, E., Kallies, A., and Nutt, S.L. (2013). Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 34, 74–80.10.1016/j.it.2012.11.002Search in Google Scholar PubMed

Crotty, S. (2019). T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148.10.1016/j.immuni.2019.04.011Search in Google Scholar PubMed PubMed Central

Dashtsoodol, N., Bortoluzzi, S., and Schmidt-Supprian, M. (2019). T Cell receptor expression timing and signal strength in the functional differentiation of invariant natural killer T cells. Front. Immunol. 10, 841.10.3389/fimmu.2019.00841Search in Google Scholar PubMed PubMed Central

Dias, S., D’Amico, A., Cretney, E., Liao, Y., Tellier, J., Bruggeman, C., Almeida, F.F., Leahy, J., Belz, G.T., Smyth, G.K., et al. (2017). Effector regulatory T cell differentiation and immune homeostasis depend on the transcription factor Myb. Immunity 46, 78–91.10.1016/j.immuni.2016.12.017Search in Google Scholar PubMed

Dobenecker, M.W., Kim, J.K., Marcello, J., Fang, T.C., Prinjha, R., Bosselut, R., and Tarakhovsky, A. (2015). Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation. J. Exp. Med. 212, 297–306.10.1084/jem.20141499Search in Google Scholar PubMed PubMed Central

Dobenecker, M.W., Park, J.S., Marcello, J., McCabe, M.T., Gregory, R., Knight, S.D., Rioja, I., Bassil, A.K., Prinjha, R.K., and Tarakhovsky, A. (2018). Signaling function of PRC2 is essential for TCR-driven T cell responses. J. Exp. Med. 215, 1101–1113.10.1084/jem.20170084Search in Google Scholar PubMed PubMed Central

DuPage, M., Chopra, G., Quiros, J., Rosenthal, W.L., Morar, M.M., Holohan, D., Zhang, R., Turka, L., Marson, A., and Bluestone, J.A. (2015). The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238.10.1016/j.immuni.2015.01.007Search in Google Scholar PubMed PubMed Central

Ebert, A., Hill, L., and Busslinger, M. (2015). Spatial regulation of V-(D)J recombination at antigen receptor loci. Adv. Immunol. 128, 93–121.10.1016/bs.ai.2015.07.006Search in Google Scholar PubMed

Goswami, S., Apostolou, I., Zhang, J., Skepner, J., Anandhan, S., Zhang, X., Xiong, L., Trojer, P., Aparicio, A., Subudhi, S.K., et al. (2018). Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818.10.1172/JCI99760Search in Google Scholar PubMed PubMed Central

Gray, S.M., Amezquita, R.A., Guan, T., Kleinstein, S.H., and Kaech, S.M. (2017). Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608.10.1016/j.immuni.2017.03.012Search in Google Scholar PubMed PubMed Central

Gulati, N., Beguelin, W., and Giulino-Roth, L. (2018). Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk. Lymphoma 59, 1574–1585.10.1080/10428194.2018.1430795Search in Google Scholar PubMed PubMed Central

Gunawan, M., Venkatesan, N., Loh, J.T., Wong, J.F., Berger, H., Neo, W.H., Li, L.Y., La Win, M.K., Yau, Y.H., Guo, T., et al. (2015). The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat. Immunol. 16, 505–516.10.1038/ni.3125Search in Google Scholar PubMed

Guo, M., Price, M.J., Patterson, D.G., Barwick, B.G., Haines, R.R., Kania, A.K., Bradley, J.E., Randall, T.D., Boss, J.M., and Scharer, C.D. (2018). EZH2 represses the B cell transcriptional program and regulates antibody-secreting cell metabolism and antibody production. J. Immunol. 200, 1039–1052.10.4049/jimmunol.1701470Search in Google Scholar PubMed PubMed Central

He, S., Xie, F., Liu, Y., Tong, Q., Mochizuki, K., Lapinski, P.E., Mani, R.S., Reddy, P., Mochizuki, I., Chinnaiyan, A.M., et al. (2013). The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease. Blood 122, 4119–4128.10.1182/blood-2013-05-505180Search in Google Scholar PubMed PubMed Central

Herviou, L., Jourdan, M., Martinez, A.M., Cavalli, G., and Moreaux, J. (2019). EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia 33, 2047–2060.10.1038/s41375-019-0392-1Search in Google Scholar PubMed PubMed Central

Hou, S., Clement, R.L., Diallo, A., Blazar, B.R., Rudensky, A.Y., Sharpe, A.H., and Sage, P.T. (2019). FoxP3 and Ezh2 regulate Tfr cell suppressive function and transcriptional program. J. Exp. Med. 216, 605–620.10.1084/jem.20181134Search in Google Scholar PubMed PubMed Central

Huang, Q., Seillet, C., and Belz, G.T. (2017). Shaping innate lymphoid cell diversity. Front. Immunol. 8, 1569.10.3389/fimmu.2017.01569Search in Google Scholar PubMed PubMed Central

Jacobsen, J.A., Woodard, J., Mandal, M., Clark, M.R., Bartom, E.T., Sigvardsson, M., and Kee, B.L. (2017). EZH2 regulates the developmental timing of effectors of the pre-antigen receptor checkpoints. J. Immunol. 198, 4682–4691.10.4049/jimmunol.1700319Search in Google Scholar PubMed PubMed Central

Kamminga, L.M., Bystrykh, L.V., de Boer, A., Houwer, S., Douma, J., Weersing, E., Dontje, B., and de Haan, G. (2006). The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179.10.1182/blood-2005-09-3585Search in Google Scholar PubMed PubMed Central

Keenan, C.R., Iannarella, N., Garnham, A.L., Brown, A.C., Kim, R.Y., Horvat, J.C., Hansbro, P.M., Nutt, S.L., and Allan, R.S. (2019). Polycomb repressive complex 2 is a critical mediator of allergic inflammation. JCI Insight. 4. e127745.10.1172/jci.insight.127745Search in Google Scholar PubMed PubMed Central

Koubi, M., Poplineau, M., Vernerey, J., N’Guyen, L., Tiberi, G., Garciaz, S., El-Kaoutari, A., Maqbool, M.A., Andrau, J.C., Guillouf, C., et al. (2018). Regulation of the positive transcriptional effect of PLZF through a non-canonical EZH2 activity. Nucleic. Acids Res. 46, 3339–3350.10.1093/nar/gky080Search in Google Scholar PubMed PubMed Central

Kwon, H.K., Chen, H.M., Mathis, D., and Benoist, C. (2017). Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248.10.1038/ni.3835Search in Google Scholar PubMed PubMed Central

Laugesen, A., Hojfeldt, J.W., and Helin, K. (2019). Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18.10.1016/j.molcel.2019.03.011Search in Google Scholar PubMed PubMed Central

Lee, J.M., Lee, J.S., Kim, H., Kim, K., Park, H., Kim, J.Y., Lee, S.H., Kim, I.S., Kim, J., Lee, M., et al. (2012). EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48, 572–586.10.1016/j.molcel.2012.09.004Search in Google Scholar PubMed

Lee, S.C., Miller, S., Hyland, C., Kauppi, M., Lebois, M., Di Rago, L., Metcalf, D., Kinkel, S.A., Josefsson, E.C., Blewitt, M.E., et al. (2015). Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood 126, 167–175.10.1182/blood-2014-12-615898Search in Google Scholar PubMed

Li, H., Liefke, R., Jiang, J., Kurland, J.V., Tian, W., Deng, P., Zhang, W., He, Q., Patel, D.J., Bulyk, M.L., et al. (2017). Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291.10.1038/nature23881Search in Google Scholar PubMed PubMed Central

Li, F., Zeng, Z., Xing, S., Gullicksrud, J.A., Shan, Q., Choi, J., Badovinac, V.P., Crotty, S., Peng, W., and Xue, H.H. (2018). Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat. Commun. 9, 5452.10.1038/s41467-018-07853-zSearch in Google Scholar PubMed PubMed Central

Loh, J.T., Lim, T.J.F., Ikumi, K., Matoba, T., Janela, B., Gunawan, M., Toyama, T., Bunjamin, M., Ng, L.G., Poidinger, M., et al. (2018). Ezh2 controls skin tolerance through distinct mechanisms in different subsets of skin dendritic cells. iScience 10, 23–39.10.1016/j.isci.2018.11.019Search in Google Scholar PubMed PubMed Central

Majewski, I.J., Ritchie, M.E., Phipson, B., Corbin, J., Pakusch, M., Ebert, A., Busslinger, M., Koseki, H., Hu, Y., Smyth, G.K., et al. (2010). Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 116, 731–739.10.1182/blood-2009-12-260760Search in Google Scholar PubMed

Mandal, M., Powers, S.E., Maienschein-Cline, M., Bartom, E.T., Hamel, K.M., Kee, B.L., Dinner, A.R., and Clark, M.R. (2011). Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat. Immunol. 12, 1212–1220.10.1038/ni.2136Search in Google Scholar PubMed PubMed Central

Minnich, M., Tagoh, H., Bonelt, P., Axelsson, E., Fischer, M., Cebolla, B., Tarakhovsky, A., Nutt, S.L., Jaritz, M., and Busslinger, M. (2016). Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat. Immunol. 17, 331–343.10.1038/ni.3349Search in Google Scholar PubMed PubMed Central

Mochizuki-Kashio, M., Mishima, Y., Miyagi, S., Negishi, M., Saraya, A., Konuma, T., Shinga, J., Koseki, H., and Iwama, A. (2011). Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118, 6553–6561.10.1182/blood-2011-03-340554Search in Google Scholar PubMed

Mochizuki-Kashio, M., Aoyama, K., Sashida, G., Oshima, M., Tomioka, T., Muto, T., Wang, C., and Iwama, A. (2015). Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner. Blood 126, 1172–1183.10.1182/blood-2015-03-634428Search in Google Scholar PubMed

Musselman, C.A., Avvakumov, N., Watanabe, R., Abraham, C.G., Lalonde, M.E., Hong, Z., Allen, C., Roy, S., Nunez, J.K., Nickoloff, J., et al. (2012). Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272.10.1038/nsmb.2435Search in Google Scholar PubMed PubMed Central

Nakagawa, M. and Kitabayashi, I. (2018). Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci. 109, 2342–2348.10.1111/cas.13655Search in Google Scholar PubMed PubMed Central

Nutt, S.L., Hodgkin, P.D., Tarlinton, D.M., and Corcoran, L.M. (2015). The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171.10.1038/nri3795Search in Google Scholar PubMed

Perino, M., van Mierlo, G., Karemaker, I.D., van Genesen, S., Vermeulen, M., Marks, H., van Heeringen, S.J., and Veenstra, G.J.C. (2018). MTF2 recruits polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50, 1002–1010.10.1038/s41588-018-0134-8Search in Google Scholar PubMed

Plitas, G. and Rudensky, A.Y. (2016). Regulatory T cells: differentiation and function. Cancer Immunol. Res. 4, 721–725.10.1158/2326-6066.CIR-16-0193Search in Google Scholar PubMed PubMed Central

Rohraff, D.M., He, Y., Farkash, E.A., Schonfeld, M., Tsou, P.S., and Sawalha, A.H. (2019). Inhibition of EZH2 ameliorates lupus-like disease in MRL/lpr mice. Arthritis Rheumatol 71, 1681–1690.10.1136/annrheumdis-2019-eular.2503Search in Google Scholar

Sarmento, O.F., Svingen, P.A., Xiong, Y., Sun, Z., Bamidele, A.O., Mathison, A.J., Smyrk, T.C., Nair, A.A., Gonzalez, M.M., Sagstetter, M.R., et al. (2017). The role of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the pathobiological mechanisms underlying inflammatory bowel disease (IBD). J. Biol. Chem. 292, 706–722.10.1074/jbc.M116.749663Search in Google Scholar PubMed PubMed Central

Scharer, C.D., Barwick, B.G., Guo, M., Bally, A.P.R., and Boss, J.M. (2018). Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat. Commun. 9, 1698.10.1038/s41467-018-04125-8Search in Google Scholar PubMed PubMed Central

Su, I.H., Basavaraj, A., Krutchinsky, A.N., Hobert, O., Ullrich, A., Chait, B.T., and Tarakhovsky, A. (2003). Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131.10.1038/ni876Search in Google Scholar PubMed

Su, I.H., Dobenecker, M.W., Dickinson, E., Oser, M., Basavaraj, A., Marqueron, R., Viale, A., Reinberg, D., Wulfing, C., and Tarakhovsky, A. (2005). Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436.10.1016/j.cell.2005.02.029Search in Google Scholar PubMed

Tong, Q., He, S., Xie, F., Mochizuki, K., Liu, Y., Mochizuki, I., Meng, L., Sun, H., Zhang, Y., Guo, Y., et al. (2014). Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J. Immunol. 192, 5012–5022.10.4049/jimmunol.1302943Search in Google Scholar PubMed PubMed Central

Tumes, D.J., Onodera, A., Suzuki, A., Shinoda, K., Endo, Y., Iwamura, C., Hosokawa, H., Koseki, H., Tokoyoda, K., Suzuki, Y., et al. (2013). The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39, 819–832.10.1016/j.immuni.2013.09.012Search in Google Scholar PubMed

Tumes, D., Hirahara, K., Papadopoulos, M., Shinoda, K., Onodera, A., Kumagai, J., Yip, K.H., Pant, H., Kokubo, K., Kiuchi, M., et al. (2019). Ezh2 controls development of natural killer T cells, which cause spontaneous asthma-like pathology. J. Allergy Clin. Immunol. 144, 549–560 e510.10.1016/j.jaci.2019.02.024Search in Google Scholar PubMed

van Mierlo, G., Veenstra, G.J.C., Vermeulen, M., and Marks, H. (2019). The complexity of PRC2 subcomplexes. Trends. Cell Biol. 29, 660–671.10.1016/j.tcb.2019.05.004Search in Google Scholar PubMed

Vasanthakumar, A., Xu, D., Lun, A.T., Kueh, A.J., van Gisbergen, K.P., Iannarella, N., Li, X., Yu, L., Wang, D., Williams, B.R., et al. (2017). A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep. 18, 619–631.10.15252/embr.201643237Search in Google Scholar PubMed PubMed Central

Velichutina, I., Shaknovich, R., Geng, H., Johnson, N.A., Gascoyne, R.D., Melnick, A.M., and Elemento, O. (2010). EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255.10.1182/blood-2010-04-280149Search in Google Scholar PubMed PubMed Central

Volkel, P., Bary, A., Raby, L., Chapart, A., Dupret, B., Le Bourhis, X., and Angrand, P.O. (2019). Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development. Sci. Rep. 9, 4319.10.1038/s41598-019-40738-9Search in Google Scholar PubMed PubMed Central

Wang, C., Oshima, M., Sato, D., Matsui, H., Kubota, S., Aoyama, K., Nakajima-Takagi, Y., Koide, S., Matsubayashi, J., Mochizuki-Kashio, M., et al. (2018a). Ezh2 loss propagates hypermethylation at T cell differentiation-regulating genes to promote leukemic transformation. J. Clin. Invest. 128, 3872–3886.10.1172/JCI94645Search in Google Scholar PubMed PubMed Central

Wang, D., Quiros, J., Mahuron, K., Pai, C.C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., et al. (2018b). Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 23, 3262–3274.10.1016/j.celrep.2018.05.050Search in Google Scholar PubMed PubMed Central

Xie, H., Xu, J., Hsu, J.H., Nguyen, M., Fujiwara, Y., Peng, C., and Orkin, S.H. (2014). Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14, 68–80.10.1016/j.stem.2013.10.001Search in Google Scholar PubMed PubMed Central

Yan, J., Dutta, B., Hee, Y.T., and Chng, W.J. (2019). Towards understanding of PRC2 binding to RNA. RNA Biol. 16, 176–184.10.1080/15476286.2019.1565283Search in Google Scholar PubMed PubMed Central

Yang, X.P., Jiang, K., Hirahara, K., Vahedi, G., Afzali, B., Sciume, G., Bonelli, M., Sun, H.W., Jankovic, D., Kanno, Y., et al. (2015). EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci. Rep. 5, 10643.10.1038/srep10643Search in Google Scholar PubMed PubMed Central

Yin, J., Leavenworth, J.W., Li, Y., Luo, Q., Xie, H., Liu, X., Huang, S., Yan, H., Fu, Z., Zhang, L.Y., et al. (2015). Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc. Natl. Acad. Sci. USA 112, 15988–15993.10.1073/pnas.1521740112Search in Google Scholar PubMed PubMed Central

Yoshida, H., Lareau, C.A., Ramirez, R.N., Rose, S.A., Maier, B., Wroblewska, A., Desland, F., Chudnovskiy, A., Mortha, A., Dominguez, C., et al. (2019). The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912 e820.10.1016/j.cell.2018.12.036Search in Google Scholar PubMed PubMed Central

Zhang, Y., Kinkel, S., Maksimovic, J., Bandala-Sanchez, E., Tanzer, M.C., Naselli, G., Zhang, J.G., Zhan, Y., Lew, A.M., Silke, J., et al. (2014). The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124, 737–749.10.1182/blood-2013-12-544106Search in Google Scholar PubMed

Zhang, W., Liu, H., Liu, W., Liu, Y., and Xu, J. (2015). Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-kappaB pathway. Cell Death Differ. 22, 287–297.10.1038/cdd.2014.142Search in Google Scholar PubMed PubMed Central

Zhang, X., Wang, Y., Yuan, J., Li, N., Pei, S., Xu, J., Luo, X., Mao, C., Liu, J., Yu, T., et al. (2018). Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J. Exp. Med. 215, 1365–1382.10.1084/jem.20171417Search in Google Scholar PubMed PubMed Central

Zhou, J., Huang, S., Wang, Z., Huang, J., Xu, L., Tang, X., Wan, Y.Y., Li, Q.J., Symonds, A.L.J., Long, H., et al. (2019). Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat. Commun. 10, 2427.10.1038/s41467-019-10176-2Search in Google Scholar PubMed PubMed Central

Received: 2019-12-18
Accepted: 2020-01-31
Published Online: 2020-02-28
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0436/html
Scroll to top button