Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 14, 2020

Integrodifference master equation describing actively growing blood vessels in angiogenesis

  • Luis L. Bonilla ORCID logo EMAIL logo , Manuel Carretero and Filippo Terragni

Abstract

We study a system of particles in a two-dimensional geometry that move according to a reinforced random walk with transition probabilities dependent on the solutions of reaction-diffusion equations (RDEs) for the underlying fields. A birth process and a history-dependent killing process are also considered. This system models tumor-induced angiogenesis, the process of formation of blood vessels induced by a growth factor (GF) released by a tumor. Particles represent vessel tip cells, whose trajectories constitute the growing vessel network. New vessels appear and may fuse with existing ones during their evolution. Thus, the system is described by tracking the density of active tips, calculated as an ensemble average over many realizations of the stochastic process. Such density satisfies a novel discrete master equation with source and sink terms. The sink term is proportional to a space-dependent and suitably fitted killing coefficient. Results are illustrated studying two influential angiogenesis models.


Corresponding author: Luis L. Bonilla, Department of Mathematics, G. Millán Institute, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés 28911, Spain, E-mail:

Award Identifier / Grant number: MTM2017-84446-C2-2-R

Acknowledgment

This work has been supported by the FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación grant MTM2017-84446-C2-2-R.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” B. Math. Biol., vol. 60, pp. 857–900, 1998. https://doi.org/10.1006/bulm.1998.0042.Search in Google Scholar PubMed

[2] M. J. Plank and B. D. Sleeman, “Lattice and non-lattice models of tumour angiogenesis,” B. Math. Biol., vol. 66, pp. 1785–1819, 2004. https://doi.org/10.1016/j.bulm.2004.04.001.Search in Google Scholar PubMed

[3] M. Scianna, J. Bell, and L. Preziosi, “A review of mathematical models for the formation of vascular networks,” J. Theor. Biol., vol. 333, pp. 174–209, 2013. https://doi.org/10.1016/j.jtbi.2013.04.037.Search in Google Scholar PubMed

[4] T. Heck, M. M. Vaeyens, and H. Van Oosterwyck, “Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis,” Math. Model. Nat. Pheno., vol. 10, pp. 108–141, 2015. https://doi.org/10.1051/mmnp/201510106.Search in Google Scholar

[5] P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, pp. 932–936, 2005.10.1038/nature04478Search in Google Scholar PubMed

[6] P. Carmeliet and M. Tessier-Lavigne, “Common mechanisms of nerve and blood vessel wiring,” Nature, vol. 436, pp. 193–200, 2005.10.1038/nature03875Search in Google Scholar PubMed

[7] R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature, vol. 438, pp. 960–966, 2005. https://doi.org/10.1038/nature04482.Search in Google Scholar PubMed

[8] M. Fruttiger, “Development of the retinal vasculature,” Angiogenesis, vol. 10, pp. 77–88, 2007.10.1007/s10456-007-9065-1Search in Google Scholar PubMed

[9] P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature, vol. 473, pp. 298–307, 2011.10.1038/nature10144Search in Google Scholar PubMed PubMed Central

[10] J. Folkman, “Tumor angiogenesis: therapeutic implications,” New Engl. J. Med., vol. 285, pp. 1182–1186, 1971. https://doi.org/10.1056/NEJM197111182852108.Search in Google Scholar PubMed

[11] J. Folkman, “Angiogenesis,” Annu. Rev. Med., vol. 57, pp. 1–18, 2006.10.1146/annurev.med.57.121304.131306Search in Google Scholar

[12] L. A. Liotta, G. M. Saidel, and J. Kleinerman, “Diffusion model of tumor vascularization,” B. Math. Biol., vol. 39, pp. 117–128, 1977. https://doi.org/10.1016/S0092-8240(77)80040-2.Search in Google Scholar

[13] M. A. J. Chaplain and A. Stuart, “A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,” IMA J. Math. Appl. Med., vol. 10, pp. 149–168, 1993. https://doi.org/10.1093/imammb/10.3.149.Search in Google Scholar

[14] M. A. J. Chaplain, “The mathematical modelling of tumour angiogenesis and invasion,” Acta Biotheor., vol. 43, pp. 387–402, 1995. https://doi.org/10.1007/BF00713561.Search in Google Scholar

[15] M. A. J. Chaplain, S. R. McDougall, and A. R. A. Anderson, “Mathematical modeling of tumor-induced angiogenesis,” Annu. Rev. Biomed. Eng., vol. 8, pp. 233–257, 2006. https://doi.org/10.1146/annurev.bioeng.8.061505.095807.Search in Google Scholar

[16] A. Stéphanou, S. R. McDougall, A. R. A Anderson, and M. A. J. Chaplain, “Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis,” Math. Comput. Model., vol. 44, pp. 96–123, 2006.10.1016/j.mcm.2004.07.021Search in Google Scholar

[17] V. Capasso and D. Morale, “Stochastic modelling of tumour-induced angiogenesis,” J. Math. Biol., vol. 58, pp. 219–233, 2009. https://doi.org/10.1007/s00285-008-0193-z.Search in Google Scholar

[18] L. L. Bonilla, V. Capasso, M. Alvaro, and M. Carretero, “Hybrid modeling of tumor-induced angiogenesis,” Phys. Rev. E, vol. 90, 2014, Art no. 062716. https://doi.org/10.1103/PhysRevE.90.062716.Search in Google Scholar

[19] L. L. Bonilla, M. Carretero, F. Terragni, and B. Birnir, “Soliton driven angiogenesis,” Sci. Rep., vol. 6, pp. 31296, 2016. https://doi.org/10.1038/srep31296.(2016).Search in Google Scholar

[20] L. L. Bonilla, M. Carretero, and F. Terragni, “Solitonlike attractor for blood vessel tip density in angiogenesis,” Phys. Rev. E, vol. 94, 2016, Art no. 062415. https://doi.org/10.1103/PhysRevE.94.062415.Search in Google Scholar PubMed

[21] F. Terragni, M. Carretero, V. Capasso, and L. L. Bonilla, “Stochastic model of tumor-induced angiogenesis: ensemble averages and deterministic equations,” Phys. Rev. E, vol. 93, 2016, Art no. 022413. https://doi.org/10.1103/PhysRevE.93.022413.Search in Google Scholar PubMed

[22] L. L. Bonilla, V. Capasso, M. Alvaro, M. Carretero, and F. Terragni, “On the mathematical modelling of tumor-induced angiogenesis,” Math. Biosci. Eng., vol. 14, pp. 45–66, 2017. https://doi.org/10.3934/mbe.2017004.Search in Google Scholar PubMed

[23] L. L. Bonilla, M. Carretero, and F. Terragni, “Ensemble averages, soliton dynamics and influence of haptotaxis in a model of tumor-induced angiogenesis,” Entropy, vol. 19, p. 209, 2017. https://doi.org/10.3390/e19050209.Search in Google Scholar

[24] P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini, and J. S. Lowengrub, “Multiscale modelling and nonlinear simulation of vascular tumour growth,” J. Math. Biol., vol. 58, pp. 765–798, 2009. https://doi.org/10.1007/s00285-008-0216-9.Search in Google Scholar PubMed PubMed Central

[25] F. Spitzer, Principles of Random Walk, New York, Springer-Verlag New York, 2001.Search in Google Scholar

[26] H. G. Othmer and A. Stevens, “Aggregation, blowup and collapse: the ABC’s of taxis and reinforced random walks,” SIAM J. Appl. Math., vol. 57, pp. 1044–1081, 1997. https://doi.org/10.1137/S0036139995291106.Search in Google Scholar

[27] L. L. Bonilla, A. Carpio, M. Carretero, G. Duro, M. Negreanu, and F. Terragni, “A convergent numerical scheme for integrodifferential kinetic models of angiogenesis,” J. Comput. Phys., vol. 375, pp. 1270–1294, 2018. https://doi.org/10.1016/j.jcp.2018.09.008.Search in Google Scholar

[28] C. W. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences, Heidelberg, Springer-Verlag Berlin, 2010.Search in Google Scholar

[29] A. L. Bauer, T. L. Jackson, and Y. Jiang, “A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,” Biophys. J., vol. 92, pp. 3105–3121, 2007. https://doi.org/10.1529/biophysj.106.101501.Search in Google Scholar PubMed PubMed Central

[30] R. F. M. Van Oers, E. G. Rens, D. J. La Valley, C. A. Reinhart-King, and R. M. H. Merks, “Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro,” PLoS Comput. Biol., vol. 10, 2014, Art no. el003774. https://doi.org/10.1371/journal.pcbi.1003774.Search in Google Scholar PubMed PubMed Central

[31] R. Vega, M. Carretero, R. D. M. Travasso, and L. L. Bonilla, “Notch signaling and taxis mechanims regulate early stage angiogenesis: A mathematical and computational model,” PLoS Comput. Biol., vol. 16, 2020, Art no. e1006919.10.1101/569897Search in Google Scholar

[32] M. Alber, N. Chen, P. M. Lushnikov, and S. A. Newman, “Continuous macroscopic limit of a discrete stochastic model for interaction of living cells,” Phys. Rev. Lett., vol. 99, 2007, Art no. 168102. https://doi.org/10.1103/PhysRevLett.99.168102.Search in Google Scholar PubMed

Received: 2019-03-23
Accepted: 2020-03-05
Published Online: 2020-07-14
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2019-0094/html
Scroll to top button