Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 7, 2022

Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O

  • Qiu Yu Zhang ORCID logo and Yu Yu EMAIL logo

Abstract

C15H18N4O, triclinic, P 1 (no. 2), a = 6.7562(5) Å, b = 9.5520(6) Å, c = 11.4227(8) Å, α = 97.206(5)°, β = 102.335(6)°, γ = 108.614(7)°, V = 667.39(9) Å3, Z = 2, R gt (F) = 0.0480, wR ref (F 2) = 0.1388, T = 150 K.

CCDC no.: 2150466

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.15 × 0.12 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 25.0°, >99%
N(hkl)measuredN(hkl)uniqueR int: 4208, 2346, 0.021
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1896
N(param)refined: 182
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.13061 (17) 0.42481 (12) 0.13536 (10) 0.0290 (3)
N1 0.6458 (2) 0.17601 (14) 0.69722 (11) 0.0211 (3)
N2 0.95986 (19) 0.36062 (14) 0.60444 (11) 0.0225 (3)
H2 1.057240 0.413802 0.574076 0.027*
N3 0.3767 (2) 0.19211 (14) 0.53973 (11) 0.0211 (3)
N4 0.69975 (19) 0.38572 (13) 0.45230 (11) 0.0195 (3)
C1 0.4747 (3) 0.05508 (18) 0.72461 (14) 0.0280 (4)
H1A 0.439908 −0.038301 0.666618 0.034*
H1B 0.344944 0.080452 0.714896 0.034*
C2 0.5431 (3) 0.0319 (2) 0.85271 (15) 0.0335 (4)
H2A 0.558185 0.120326 0.910888 0.040*
H2B 0.431362 −0.054031 0.864890 0.040*
C3 0.7540 (3) 0.0050 (2) 0.87684 (16) 0.0350 (4)
H3A 0.735549 −0.089384 0.825127 0.042*
H3B 0.798266 −0.002535 0.961657 0.042*
C4 0.9272 (3) 0.13371 (19) 0.85060 (14) 0.0290 (4)
H4A 1.058172 0.109911 0.858984 0.035*
H4B 0.960553 0.224401 0.911371 0.035*
C5 0.8621 (2) 0.16554 (17) 0.72356 (14) 0.0259 (4)
H5 0.859812 0.082446 0.662865 0.031*
C6 1.0276 (2) 0.30955 (18) 0.71385 (14) 0.0248 (4)
H6A 1.054731 0.387593 0.784598 0.030*
H6B 1.162729 0.293532 0.715075 0.030*
C7 0.7503 (2) 0.32845 (16) 0.54783 (13) 0.0179 (3)
C8 0.5820 (2) 0.22788 (16) 0.59313 (13) 0.0189 (3)
C9 0.3223 (2) 0.25400 (16) 0.44026 (13) 0.0204 (4)
C10 0.1034 (2) 0.22143 (17) 0.38113 (14) 0.0241 (4)
H10 −0.003985 0.158675 0.409732 0.029*
C11 0.0459 (3) 0.28071 (18) 0.28207 (14) 0.0263 (4)
H11 −0.099847 0.259365 0.244387 0.032*
C12 0.2066 (2) 0.37386 (17) 0.23708 (13) 0.0233 (4)
C13 0.4227 (2) 0.40793 (17) 0.29314 (13) 0.0221 (4)
H13 0.528474 0.469533 0.262840 0.027*
C14 0.4832 (2) 0.34936 (16) 0.39633 (13) 0.0188 (4)
C15 0.2883 (3) 0.5066 (2) 0.08046 (15) 0.0333 (4)
H15A 0.217304 0.532332 0.008607 0.050*
H15B 0.368249 0.445502 0.057984 0.050*
H15C 0.385878 0.597305 0.137671 0.050*

Source of material

Piperidin-2-ylmethanamine (1.1 g, 10 mmol), 2,3-dichloro-6-methoxyquinoxaline (2.3 g, 10 mmol) were added into a round bottom flask. K2CO3 (2.7 g, 20 mmol) was added after the solid was dissolved in 20 ml DMF. The mixture was stirred at 110 °C under a nitrogen atmosphere for 6 h. After cooling to room temperature, the reaction mixture was slowly poured into 200 ml purified water and filtered. The filter cake was washed with purified water (50 ml*3) and desiccated at 80 °C for 5 h, then acquired the yellow solid product (yield 61.1%). Crystals were grown by slowly crystallization from methanol. The colorless crystals were obtained by filtration and desiccation.

Experimental details

Single crystal X-ray data was collected on a SuperNova four-circle diffractometer at 149.99 K [1]. Using Olex2, the structure was solved with SHELXT program and refined with the SHELXL refinement package [2, 3]. The crystal structure of title compound was visualized using Ortep3 software [4]. All hydrogen atoms were placed in their geometrically idealized positions.

Comment

Tetrazanbigen (TNBG) is an originally designed and synthesized leading compound bearing the quinoxaline core and showing anticancer activity in vitro and in vivo [5]. Based on SAR, our research team has reported a series of derivatives with improved physical properties and biological effect comparing to TNBG [6], [7], [8]. TNBG was synthesized from (1,2,3,4-tetrahydroisoquinolin-1-yl)methanamine [9] and 2,3-dichloro-6-methoxyquinoxaline [10] and its derivatives were substituted with alkaline side chains leaving basic structure of TNBG unchanged. In this study, in order to diminish molecular weight and structural rigidity, an attempt was carried out to modify the main scaffold of TNBG by deducting a benzene ring [11]. Hence, the title compound was synthesized possessing superior water solubility and equivalent anticancer activity to reported TNBG derivatives.

In conclusion, we report the synthesis and crystal structure of the title compound which is a pivotal antitumor intermediate for further derivation. There is one molecule in the asymmetric unit of the title structure (see the Figure). All bond lengths and angles are in the expected ranges [12, 13].


Corresponding author: Yu Yu, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China, E-mail:

Award Identifier / Grant number: 30772595

Award Identifier / Grant number: 30371632

Award Identifier / Grant number: 30171070

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (30772595, 30371632, 30171070).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPro (version 1.171.37.35); Agilent Technologies UK Ltd: Yarnton, England, 2014.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Zheng, X. H., Li, W., Lan, Z. P., Yang, X., Li, L. J., Yuan, Y. H., Zhu, X., Cen, X. G., Zhang, X. Y., Yu, Y. Antitumour effects of tetrazanbigen against human hepatocellular carcinoma qgy-7701 through inducing lipid accumulation in vitro and in vivo. J. Pharm. Pharmacol. 2015, 67, 1593–1602; https://doi.org/10.1111/jphp.12467.Search in Google Scholar

6. Xiang, C., Gan, Y. J., Yu, Y., Zhang, Y. Synthesis and evaluation of new sterol derivatives as potential antitumor agents. RSC Adv. 2018, 8, 26528–26537.10.1039/C8RA04152KSearch in Google Scholar

7. Hu, X. L., Wan, C. M., Gan, Z. J., Liu, R. X., Chen, Y. J., Wang, J., Gan, L. L., Chen, Y. H., Li, Y. B., He, B. C., Yu, Y. TNBG-5602, a novel derivative of quinoxaline, inhibits liver cancer growth via upregulating peroxisome proliferator-activated receptor γ in vitro and in vivo. J. Pharm. Pharmacol. 2019, 71, 1684–1694.https://doi.org/10.1111/jphp.13159.Search in Google Scholar

8. Gan, L. L., Gan, Z. J., Dan, Y. R., Li, Y. W., Zhang, P. M., Chen, S. W., Ye, Z. J., Pan, T., Wan, C. M., Hu, X. L., Yu, Y. Tetrazanbigen derivatives as peroxisome proliferator-activated receptor gamma (PPARγ) partial agonists: design, synthesis, structure–activity relationship, and anticancer activities. J. Med. Chem. 2021, 64, 1018–1036; https://doi.org/10.1021/acs.jmedchem.0c01512.Search in Google Scholar

9. Xi, M. Y., Jia, J. M., Sun, H. P., Sun, Z. Y., Jiang, J. W., Wang, Y. J., Zhang, M. Y., Zhu, J. F., Xu, L. L., Jiang, Z. Y., Xue, X., Ye, M., Yang, X., Gao, Y., Tao, L., Guo, X. K., Xu, X. L., Zhang, X. J., Guo, Q. L., Hu, R., You, Q. D. 3-Aroylmethylene-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a] isoquinolin-4(11bH) ones as potent Nrf2/ARE inducers in human cancer cells and AOM-DSS treated mice. J. Med. Chem. 2013, 56, 7925–7938; https://doi.org/10.1021/jm400944k.Search in Google Scholar

10. Zhang, P. M., Li, Y. W., Zhou, J., Chen, Y. J., Gan, Z. J., Yu, Y. A one-pot facile synthesis of 2,3-dihydroxyquinoxaline and 2,3-dichloroquinoxaline derivatives using silica gel as an efficient catalyst. J. Heterocycl. Chem. 2018, 55, 1809–1814; https://doi.org/10.1002/jhet.3224.Search in Google Scholar

11. Makoto, N. M., Isaac, N. P., Marilyn, M. O., Tadeusz, F. M. Simplified cyclic analogues of bastadin-5. Structure-activity relationships for modulation of the RyR1/FKBP12 Ca2+ channel complex. J. Med. Chem. 2006, 49, 4497–4511.10.1021/jm050708uSearch in Google Scholar PubMed PubMed Central

12. Dan, Y. R., Gan, L. L., Yu, Y. Crystal structure of 2-methoxy-4b,5, 14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b] quinoxaline, C19H18N4O. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 595–597; https://doi.org/10.1515/ncrs-2021-0008.Search in Google Scholar

13. Chen, Y. H., Dan, Y. R., Gan, L. L., Yu, Y. Crystal structure of 3-fluoro-9-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino [2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H17FN4O. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 401–402; https://doi.org/10.1515/ncrs-2019-0708.Search in Google Scholar

Received: 2022-01-13
Accepted: 2022-02-07
Published Online: 2022-03-07
Published in Print: 2022-06-27

© 2022 Qiu Yu Zhang and Yu Yu, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0012/html
Scroll to top button