Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) August 30, 2022

An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3

  • Guido J. Reiss ORCID logo EMAIL logo , Maik Wyshusek and Jana C. Rheinländer

Abstract

C7H11I3N4O3, triclinic, P 1 (no. 2), a = 9.28478(14) Å, b = 12.2214(2) Å, c = 13.4088(2) Å, α = 76.2062(14)°, β = 88.2421(13)°, γ = 89.4102(13)°, Z = 4, V = 1476.95(4) Å3, Rgt(F) = 0.0198, wR ref = 0.0494, T = 100 K.

CCDC no.: 2201792

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Dark red block
Size: 0.16 × 0.09 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.35 mm−1
Diffractometer, scan mode: XtaLAB Synergy, ω
θ max, completeness: 32.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 64027, 10661, 0.028
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 9468
N(param)refined: 342
Programs: Diamond [1], CrysAlisPRO [2], SHELX [3], [4], [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
I1 0.500000 0.500000 0.000000 0.02532 (4)
I2 0.72732 (2) 0.33676 (2) 0.07837 (2) 0.02769 (3)
I3 1.000000 0.000000 0.000000 0.02295 (4)
I4 1.02609 (2) 0.02172 (2) 0.21160 (2) 0.03136 (4)
I5 0.57743 (2) 0.54620 (2) 0.33657 (2) 0.02765 (3)
I6 0.73787 (2) 0.70545 (2) 0.42497 (2) 0.02148 (3)
I7 0.88759 (2) 0.87813 (2) 0.49904 (2) 0.02638 (3)
O1 0.41956 (15) 0.16286 (12) 1.23298 (11) 0.0185 (3)
O2 0.08812 (15) 0.44441 (12) 1.14120 (10) 0.0167 (2)
O3 0.60392 (16) 0.14289 (12) 0.75245 (12) 0.0196 (3)
O4 0.92322 (14) 0.43309 (11) 0.64932 (10) 0.0156 (2)
O1W 0.32904 (16) 0.09026 (13) 0.81330 (12) 0.0185 (3)
H1W 0.276 (5) 0.079 (4) 0.779 (4) 0.070*
H2W 0.404 (5) 0.100 (4) 0.787 (4) 0.070*
O2W 0.68244 (17) 0.10492 (12) 0.31027 (12) 0.0188 (3)
H3W 0.749 (5) 0.102 (4) 0.273 (4) 0.070*
H4W 0.613 (5) 0.126 (4) 0.271 (4) 0.070*
N1 0.25906 (16) 0.30691 (12) 1.18344 (11) 0.0127 (2)
N2 0.33499 (16) 0.19142 (13) 1.07175 (12) 0.0140 (3)
N3 0.22853 (17) 0.24766 (13) 0.90240 (12) 0.0134 (3)
H3 0.269 (4) 0.204 (3) 0.874 (3) 0.040 (9)*
N4 0.09020 (17) 0.38360 (13) 0.93048 (12) 0.0136 (3)
H4 0.036 (3) 0.433 (3) 0.922 (2) 0.024 (7)*
N5 0.76286 (16) 0.28713 (13) 0.69941 (12) 0.0137 (3)
N6 0.67551 (17) 0.18425 (13) 0.58392 (12) 0.0149 (3)
N7 0.76881 (17) 0.25466 (13) 0.40763 (12) 0.0146 (3)
H7 0.737 (4) 0.208 (3) 0.378 (3) 0.037 (9)*
N8 0.90281 (17) 0.39127 (13) 0.43327 (12) 0.0139 (3)
H8 0.959 (3) 0.444 (3) 0.422 (2) 0.029 (8)*
C1 0.34262 (18) 0.21677 (15) 1.16653 (14) 0.0138 (3)
C2 0.16130 (18) 0.37001 (14) 1.11619 (13) 0.0126 (3)
C3 0.16029 (18) 0.33834 (14) 1.02042 (13) 0.0122 (3)
C4 0.13298 (19) 0.32846 (15) 0.86107 (14) 0.0142 (3)
H4A 0.101217 0.343470 0.792438 0.017*
C5 0.24671 (18) 0.25369 (14) 1.00170 (13) 0.0117 (3)
C6 0.4201 (2) 0.09643 (17) 1.05228 (17) 0.0214 (4)
H6A 0.401621 0.029425 1.107913 0.032*
H6B 0.522839 0.115106 1.049107 0.032*
H6C 0.392834 0.081339 0.986830 0.032*
C7 0.2848 (2) 0.34158 (18) 1.27933 (15) 0.0201 (4)
H7A 0.211494 0.396645 1.289020 0.030*
H7B 0.380586 0.375655 1.275285 0.030*
H7C 0.279616 0.275510 1.337465 0.030*
C8 0.67575 (19) 0.20124 (15) 0.68211 (14) 0.0149 (3)
C9 0.84730 (18) 0.36076 (14) 0.62594 (13) 0.0126 (3)
C10 0.83601 (19) 0.34098 (15) 0.52618 (13) 0.0129 (3)
C11 0.8603 (2) 0.33829 (16) 0.36381 (14) 0.0157 (3)
H11 0.890156 0.356637 0.293400 0.019*
C12 0.75388 (18) 0.25518 (14) 0.50885 (13) 0.0132 (3)
C13 0.5931 (2) 0.08943 (16) 0.56482 (17) 0.0203 (4)
H13A 0.493918 0.113672 0.548487 0.030*
H13B 0.592654 0.027091 0.626305 0.030*
H13C 0.638013 0.064361 0.506951 0.030*
C14 0.7572 (2) 0.30077 (17) 0.80578 (14) 0.0179 (3)
H14A 0.805933 0.370717 0.808440 0.027*
H14B 0.805391 0.236699 0.850665 0.027*
H14C 0.656419 0.303973 0.828954 0.027*

Source of material

All chemicals were obtained from commercial sources and used as purchased. The title compound was synthesised by dissolving 0.15 g theophylline (0.8 mmol) in 5 mL of 57% aqueous hydroiodid acid. Red crystals were harvested from the mother liquor after two days in the fridge at 5 °C.

Experimental details

A small isometric crystal of the title compound was directly selected from the mother liquor and mounted on a Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector [2] using a nylon loop at 100 K. An absorption correction (numerical absorption correction) was applied [2]. The structure solution and the refinement succeeded using the SHELX program system [3], [4], [5]. Atomic coordinates of hydrogen atoms belonging to the water molecules and those hydrogen atoms attached to nitrogen were refined freely. All other hydrogen atoms were added using a corresponding riding model with fixed Uiso parameters. The maximum residual peak of 2.26 eÅ−3 is found 0.64 Å apart from I7 and the deepest hole of −1.75 eÅ−3 is found 0.56 Å apart from I7.

Comment

Introduction

The term polyiodides – formerly named periodides [6] – describes a class of compounds that is defined as the anionic part of a salt-type structure, which fullfills the general formula I 2 m n n (n = 2–5, m = integer). Almost all of the currently known polyiodides consist of I, I 3 and I2 subunits. These two simple ions and the I2 molecule show a strong tendency to form extended, halogen bonded structures [7], [8], [9], [10], [11]. Polyiodides are of interest not only because of their structures, but also because of reported applications. Some important applications are listed in our preceeding article [12]. We have already shown that planar, nitrogen-based heterocyclic cations support the formation of iodine rich compounds [13, 14]. Especially using different methylxanthinium cations, some polyiodide salts have already been characterised by us [15, 16] and others [17], [18], [19]. The bonding properties of short-chain polyiodides like I 4 2 [12, 20, 21] and especially I 6 2 [22], [23], [24] are still of general interest.

Structural comments

The asymmetric unit of the title structure contains two crystallographically independent theophyllinium cations, one I 3 anion in a general position, two halves of I 3 anions on inversion centers (Wyckoff sites 1a and 1e) and two water molecules in general positions (see the figure). Thus, the overall composition can be summerized as theophyllinium triiodide monohydrate [systematic name: 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium triiodide—water (1/1)].

Each of the two crystallographically independent theophyllinium cations forms a dimer with a symmetry related theophyllinium cation by NH⃛O hydrogen bonds (see the left part of the figure). These dimers are furthermore connected via O–H⃛O hydrogen bonds between the water molecules and the cations to furnish a wavy layer. The bond lengths and angles within the cations as well as the geometric parameters in the various hydrogen bonds are in the expected ranges [16]. The two I 3 anions located on inversion centers (see the middle section of the Figure; I2−I1−I2′; I4−I3−I3″; ′ = 1−x 1−y, −z, ″ = 2−x, −y, −z) are not connected to any other triiodide anions and feature only weak hydrogen bonds to water molecules and the cations. The triiodide anion located in a general position is attached to its symmetry-related triiodide anion (inversion symmetry; Wyckoff site 1b) (see middle part of the figure; I7⃛I7‴ distance = 3.6605(3) Å; symmetry operation: 2−x, 2−y, 1−z). This secondary I⃛I bonding interaction is weak, but significantly shorter than any van der Waals distances in various scales [25]. To classify this secondary halogen bond in more detail a comparison with some literature known I 6 2 anions is needed. Structures of catenated triodides have not been considered for this comparison. To the best of our knowledge, the shortest halogen bonded triiodide—triiodide distance of 3.5017(2) Å is found in a structure, which is characterised by strong charge supported hydrogen bonds between the coutercation and both terminal I atoms of the I 6 2 anion [22]. A distance of 3.6317(4) Å is found for the I 6 2 anion trapped in the van der Waals void of a hydrogen bonded framework [23]. Recently even in the case of a distance of 3.848 Å [24] a halogen bonding interaction was discussed by the authors. Thus the I7⃛I7‴ distance of 3.6733(12) Å in the title structure is in the upper part of the scope of such halogen bonds, but we think that the motif must be discussed as another I 6 2 anion. In detail, each triiodide part within the I 6 2 anion shows a bonding angle of 175.08(2)° and the angle between the two I 3 ions (I8−I7⃛I7‴) is 160.74(1)°. In general all I−I bonding parameters of the triiodide anions are in the expected ranges (I1−I2 = 2.9307(2) Å; I3−I4 = 2.9296(2) Å; I5−I6 = 2.9463(2) Å; I6−I7 = 2.9183(2) Å) [13].

A packing diagram with a view against the c axis is shown in the right part of the figure. Classical hydrogen bonding interactions only occur in the aforementioned layers consisting of the cations and the water molecules. These layers are stacked along the b axis. The hydrogen bonded layers are connected via van der Waals interactions only (green line in the right part of the figure). The triiodide anions as well as the I 6 2 anions fill the voids within and between these layers. One of the triiodide anions (right part of the figure, I4−I3−I4″) and the I 6 2 anions are oriented along [110], whereas the triiodide anion I2−I1−I2′ is almost oriented along [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

Conclusion

Recently we have shown that hydrogen bonded motifs constructed by theophyllinium cations form layered and more complex frameworks, that are able to stabilize interesting couter anions [[26] and references cited there]. The title structure is one more example to show the performance of the theophyllinium cation to act as a tecton in crystal engineering.


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung Heinrich–Heine–Universität Düsseldorf Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North–Rhine Westphalia; German Research Foundation (DFG): Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector

Award Identifier / Grant number: No. 440366605

Funding source: Open Access fund of the Heinrich–Heine–Universität Düsseldorf

Award Identifier / Grant number: ULBD-22–11676

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Ministry of Innovation, Science and Research of North–Rhine Westphalia; the German Research Foundation (DFG) for financial support (Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector, project no. 440366605); and finally funded by the Open Access fund of the Heinrich–Heine–Universität Düsseldorf (project no. ULBD-22–11676).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System, Ver. 4.5.2; Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar

2. Oxford Diffraction. CrysAlisPRO, (version 1.171.41.93a); Oxford Diffraction Ltd.: Oxford, UK, 2020.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/S0021889811043202.Search in Google Scholar PubMed PubMed Central

6. Tilden, W. A. On the periodides of some of the organic bases. J. Chem. Soc. 1865, 18, 99–105; https://doi.org/10.1039/js8651800099.Search in Google Scholar

7. Tebbe, K.-F. Polyhalogen cations and polyhalide anions. In Homoatomic Rings, Chain and Macromolecules of Main-Group Elements; Wood, H., Belger, F., Eds. Elsevier: Amsterdam, 1977; pp. 551–606.Search in Google Scholar

8. Blake, A. J., Devillanova, F. A., Gould, R. O., Li, W. S., Lippolis, V., Parsons, S., Radek, C., Schröder, M. Template self-assembly of polyiodide networks. Chem. Soc. Rev. 1998, 27, 195–205; https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<293::AID-ANIE293>3.0.CO;2-5.10.1039/a827195zSearch in Google Scholar

9. Svensson, P. H., Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684; https://doi.org/10.1021/cr0204101.Search in Google Scholar PubMed

10. Peuronen, A., Rinta, H., Lahtinen, M. N⃛I halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide. CrystEngComm 2015, 17, 1736–1740; https://doi.org/10.1039/c4ce01866d.Search in Google Scholar

11. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.Search in Google Scholar PubMed PubMed Central

12. Reiss, G. J. Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2), C8H16I5N2O. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1047–1050; https://doi.org/10.1515/ncrs-2020-0164.Search in Google Scholar

13. Reiss, G. J. Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 899–902; https://doi.org/10.1515/ncrs-2019-0127.Search in Google Scholar

14. Reiss, G. J., van Megen, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B 2012, B67, 5–10; https://doi.org/10.1515/znb-2012-0102.Search in Google Scholar

15. Merkelbach, J., Majewski, M. A., Reiss, G. J. Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N4O2. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 941–944; https://doi.org/10.1515/ncrs-2018-0125.Search in Google Scholar

16. Reiss, G. J. A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 737–739; https://doi.org/10.1515/ncrs-2019-0082.Search in Google Scholar

17. Herbstein, F., Kaftory, M., Kapon, M., Saenger, W. Structures of three crystals containing approximately—linear chains of triiodide ions: [Tetra n-butylammonium triiodide, bis(benzamide) hydrogen triiodide, caffeine monohydrate hydrogen triiodide]. Z. Kristallogr. Cryst. Mater. 1981, 154, 11–30; https://doi.org/10.1524/zkri.1981.154.14.11.Search in Google Scholar

18. Cingi, M. B., Lanfredi, A. M. M., Tiripicchio, A., Bandoli, G., Clemente, D. A. Crystal structure of 2:1 molecular complexes of caffeine with hexaaquamagnesium(II) bromide and hexaaquamanganese(II) triiodide iodide. Inorg. Chim. Acta 1981, 52, 237–243; https://doi.org/10.1016/s0020-1693(00)88603-x.Search in Google Scholar

19. Herbstein, F., Kapon, M. I164− Ions in crystalline (theobromine)2 . H2I8; X-ray structure of (theobromine)2. H2I8. J. Chem. Soc., Chem. Commun. 1975, 16, 677–678; https://doi.org/10.1039/c39750000677.Search in Google Scholar

20. Grześkiewicz, A. M., Kubicki, M. Factors affecting charge transfer in tetraiodide dianions. New J. Chem. 2018, 42, 10661–10669.10.1039/C8NJ00737CSearch in Google Scholar

21. Weçławik, M., Gagor, A., Piecha, A., Jakubas, R., Medycki, W. Synthesis, crystal structure and phase transitions of a series of imidazolium iodides. CrystEngComm 2013, 15, 5633–5640.10.1039/c3ce40559aSearch in Google Scholar

22. van Megen, M., Reiss, G. J. I62− anion composed of two symmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 2013, 1, 3–13; https://doi.org/10.3390/inorganics1010003.Search in Google Scholar

23. Meyer, M. K., Graf, J., Reiss, G. J. Dimer oder nicht dimer, das ist hier die Frage: Zwei benachbarte I3−–Ionen eingeschlossen in Hohlräumen einer komplexen Wirtsstruktur. Z. Naturforsch. B 2010, 65, 1462–1466; https://doi.org/10.1515/znb-2010-1209.Search in Google Scholar

24. Korobeinikov, N. A., Usoltsev, A. N., Shentseva, I. A., Abramov, P. A., Korolkov, I. V., Plusnin, P. E., Kolesov, B. A., Sokolov, M. N., Adonin, S. A. Triiodide salts of 4-dimethylamino- and 3-bromo-1-methylpyridinium: crystal structures and features of non-covalent I⃛I interactions in solids. J. Struct. Chem. 2022, 63, 988–995; https://doi.org/10.1134/s0022476622060178.Search in Google Scholar

25. Hu, S.-Z., Zhou, Z.-H., Xie, Z.-X., Robertsion, B. E. A comparative study of crystallographic van der Waals radii. Z. für Kristallogr. Cryst. Mater. 2014, 229, 517–523; https://doi.org/10.1515/zkri-2014-1726.Search in Google Scholar

26. Reiss, G. J., Wyshusek, M. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4]− anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9. Z. Kristallogr. N. Cryst. Struct. 2021, 237, 121–124; https://doi.org/10.1515/ncrs-2021-0399.Search in Google Scholar

Received: 2022-07-14
Accepted: 2022-08-16
Published Online: 2022-08-30
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0358/html
Scroll to top button