Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 11, 2022

Alkaline-earth metal(II) complexes of salinomycin – spectral properties and antibacterial activity

  • Ivayla Pantcheva EMAIL logo , Nikolay Petkov , Svetlana Simova , Rumyana Zhorova and Petar Dorkov
From the journal Physical Sciences Reviews

Abstract

In the present paper the synthesis and structural characterization of alkaline-earth metal(II) complexes of the polyether ionophorous antibiotic salinomycinic acid (SalH.H2O) are discussed. The complexes [M(Sal)2(H2O)2] (M = Mg2+, 1; Ca2+, 2; Sr2+, 3; Ba2+, 4) were obtained reacting salinomycinic acid and Et4NOH with the corresponding metal(II) salts at metal-to-ligand-to-base molar ratio of 1:1:1. The spectral properties of 1–4 were characterized using infrared spectroscopy, fast atom bombardment-mass spectrometry, nuclear magnetic resonance and elemental analysis data. The crystallinity degree and morphology of complex 2 were studied by X-ray powder diffraction and transmission electron microscopy. The biometal(II) salinomycinate complexes 1 and 2 possess an enhanced antimicrobial activity compared to the parent antibiotic against Gram-positive bacteria. The comparison between the effectiveness of the complexes, reported here, and the already known isostructural coordination species of salinomycin and monensin (MonH.H2O), revealed that magnesium(II) and calcium(II) monensinates appear to be promising antibacterial agents against Bacillus subtilis, Bacillus cereus and Micrococcus luteus.


Corresponding author: Ivayla Pantcheva, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski, 1, J. Bourchier Blvd., Sofia 1164, Bulgaria, E-mail:

Award Identifier / Grant number: KP-06-H29/3

  1. Author contributions: IP – Conceptualization, writing (original draft, revision), NP – Structure modelling and optimization, writing (revised version), SS – Data curation, writing (original draft), RZ – Investigation, PD – Data curation.

  2. Research funding: The present research was financially supported by the Bulgarian National Science Fund (Contract № KP-06-H-29/3).

  3. Conflict of interest statement: Authors state there is no conflict of interest.

  4. Ethical approval: The conducted research is not related to either human or animal use.

  5. Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Agtarap, A, Chamberlin, JW, Pinkerton, M, Steinrauf, LK. The structure of monensic acid, a new biologically active compound. J Am Chem Soc 1967;8:5737–9. https://doi.org/10.1021/ja00998a062.Search in Google Scholar PubMed

2. Shumard, R, Callender, M. Monensin, a new biologically active compound. VI. Anticoccidial activity. Antimicrob Agents Chemother 1967;7:369–77.Search in Google Scholar

3. Miyazaki, Y, Shibuya, M, Sugawara, H, Kawaguchi, O, Hirose, C, Nagatsu, J, et al.. Salinomycin, a new polyether antibiotic. J Antibiot (Tokyo) 1974;27:814–21. https://doi.org/10.7164/antibiotics.28.854.Search in Google Scholar PubMed

4. Mitani, M, Yamanishi, T, Miyazaki, Y. Salinomycin: a new monovalent cation ionophore. Biochem Biophys Res Commun 1975;66:1231–6. https://doi.org/10.1016/0006-291x(75)90490-8.Search in Google Scholar PubMed

5. Keller-Juslen, C, King, HD, Kuhn, M, Loosli, HR, Wartburg, AV. Noboritomycins A and B, new polyether antibiotics. J Antibiot (Tokyo) 1978;31:820–8. https://doi.org/10.7164/antibiotics.31.820.Search in Google Scholar PubMed

6. Odai, H, Shindo, K, Odagawa, A, Mochizuki, J, Hamada, M, Takeuchi, T. Inostamycins B and C, new polyether antibiotics. J Antibiot (Tokyo) 1994;47:939–41. https://doi.org/10.7164/antibiotics.47.939.Search in Google Scholar PubMed

7. Smith, CKII, Strout, RG. Eimeria tenella: effect of narasin, a polyether antibiotic on the ultrastructure of intracellular sporozoites. Exp Parasitol 1980;50:426–36. https://doi.org/10.1016/0014-4894(80)90045-4.Search in Google Scholar PubMed

8. Chapman, HD, Jeffers, TK, Williams, RB. Forty years of monensin for the control of coccidiosis in poultry. Poultry Sci 2010;89:1788–801. https://doi.org/10.3382/ps.2010-00931.Search in Google Scholar PubMed

9. Rybicki, MJ. Coccidiostats in treating coccidiosis. Food Sci Technol Qual 2020;27:127–37. https://doi.org/10.15193/zntj/2020/125/364.Search in Google Scholar

10. Antonenko, YN, Rokitskaya, TI, Huczyński, A. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Biochim Biophys Acta – Biomembr 2015;1848:995–1004. https://doi.org/10.1016/j.bbamem.2015.01.005.Search in Google Scholar PubMed

11. Kevin, DAII, Meujo, DA, Hamann, MT. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug resistant bacteria and parasites. Expet Opin Drug Discov 2009;4:109–46. https://doi.org/10.1517/17460440802661443.Search in Google Scholar PubMed PubMed Central

12. Rutkowski, J, Brzezinski, B. Structures and properties of naturally occurring polyether antibiotics. BioMed Res Int 2013;2013:162513. https://doi.org/10.1155/2013/162513.Search in Google Scholar PubMed PubMed Central

13. D’Alessandro, S, Corbett, Y, Ilboudo, DP, Misiano, P, Dahiya, N, Abay, SM, et al.. Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 2015;59:5135–44. https://doi.org/10.1128/AAC.04332-14.Search in Google Scholar PubMed PubMed Central

14. Gupta, P, Onder, TT, Jiang, G, Tao, K, Kuperwasser, C, Weinberg, RA, et al.. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009;138:645–59. https://doi.org/10.1016/j.cell.2009.06.034.Search in Google Scholar PubMed PubMed Central

15. Dewangan, J, Srivastava, S, Rath, SK. Salinomycin: a new paradigm in cancer therapy. Tumor Biol 2017;39:1–12. https://doi.org/10.1177/1010428317695035.Search in Google Scholar PubMed

16. Huczyński, A, Janczak, J, Antoszczak, M, Wietrzyk, J, Maj, E, Brzezinski, B. Antiproliferative activity of salinomycin and its derivatives. Bioorg Med Chem Lett 2012;22:7146–50. https://doi.org/10.1016/j.bmcl.2012.09.068.Search in Google Scholar PubMed

17. Huczyński, A, Antoszczak, M, Kleczewska, N, Lewowska, M, Maj, E, Stefańska, J, et al.. Synthesis and biological activity of salinomycin conjugates with floxuridine. Eur J Med Chem 2015;93:33–41. https://doi.org/10.1016/j.ejmech.2015.01.045.Search in Google Scholar PubMed

18. Steverding, D, Antoszczak, M, Huczyński, A. In vitro activity of salinomycin and monensin derivatives against Trypanosoma brucei. Parasites Vectors 2016;9:409. https://doi.org/10.1186/s13071-016-1698-8.Search in Google Scholar PubMed PubMed Central

19. Antoszczak, M, Huczyński, A. Bioconjugation of ionophore antibiotics: a way to obtain hybrids with potent biological activity. Mini-Reviews Org Chem 2017;14:258–71. https://doi.org/10.2174/1570193X14666170518112608.Search in Google Scholar

20. Antoszczak, M, Urbaniak, A, Delgado, M, Maj, E, Borgström, B, Wietrzyk, J, et al.. Biological activity of doubly modified salinomycin analogs – evaluation in vitro and ex vivo. Eur J Med Chem 2018;156:510–23. https://doi.org/10.1016/j.ejmech.2018.07.021.Search in Google Scholar PubMed

21. Antoszczak, M, Huczyński, A. Salinomycin and its derivatives – a new class of multiple-targeted “magic bullets”. Eur J Med Chem 2019;176:208–27. https://doi.org/10.1016/j.ejmech.2019.05.031.Search in Google Scholar PubMed

22. Dorkov, P, Pantcheva, IN, Sheldrick, WS, Mayer-Figge, H, Petrova, R, Mitewa, M. Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic sodium monensin A. J Inorg Biochem 2008;102:26–32. https://doi.org/10.1016/j.jinorgbio.2007.06.033.Search in Google Scholar PubMed

23. Pantcheva, IN, Zhorova, R, Mitewa, M, Simova, S, Mayer-Figge, H, Sheldrick, WS. First solid state alkaline-earth complexes of monensic acid A (MonH): crystal structure of [M(Mon)2(H2O)2] (M = Mg, Ca), spectral properties and cytotoxicity against aerobic Gram-positive bacteria. Biometals 2010;23:59–70. https://doi.org/10.1007/s10534-009-9269-5.Search in Google Scholar PubMed

24. Pantcheva, IN, Ivanova, J, Zhorova, R, Mitewa, M, Simova, S, Mayer-Figge, H, et al.. Nickel(II) and zinc(II) dimonensinates: single crystal X-ray structure, spectral properties and bactericidal activity. Inorg Chim Acta 2010;363:1879–86. https://doi.org/10.1016/j.ica.2010.02.009.Search in Google Scholar

25. Ivanova, J, Pantcheva, IN, Zhorova, R, Momekov, G, Simova, S, Stoyanova, R, et al.. Synthesis, spectral properties, antibacterial and antitumor activity of salinomycin complexes with the transition metal ions Co(II), Ni(II), Cu(II) and Zn(II). J Chem Chem Eng 2012;6:551–62. https://doi.org/10.17265/1934-7375/2012.06.010.Search in Google Scholar

26. Franz, KJ, Metzler-Nolte, N. Introduction: metals in medicine. Chem Rev 2019;119:727–9. https://doi.org/10.1021/acs.chemrev.8b00685.Search in Google Scholar PubMed

27. Englinger, B, Pirker, C, Heffeter, P, Terenzi, A, Kowol, CR, Keppler, BK, et al.. Metal drugs and the anticancer immune response. Chem Rev 2019;119:1519–624. https://doi.org/10.1021/acs.chemrev.8b00396.Search in Google Scholar PubMed

28. Alexandrova, RI, Alexandrov, M, Miloshev, G, Georgieva, M, Pantcheva, IN, Mitewa, MI. Cytostatic and cytotoxic properties of monensic acid and its biometal(II) complexes against human tumor/non-tumor cell lines. Cent Eur J Chem 2012;10:1464–74. https://doi.org/10.2478/s11532-012-0071-9.Search in Google Scholar

29. Pantcheva, IN, Alexandrova, RI, Zhivkova, T, Mitewa, MI. In vitro activity of biometal(II) complexes of monensin against virus-induced transplantable animal tumors. Biotechnol Biotechnol Equip 2013;27:3703–8. https://doi.org/10.5504/BBEQ.2012.0088.Search in Google Scholar

30. Momekova, D, Momekov, G, Ivanova, J, Pantcheva, I, Drakalska, E, Stoyanov, N, et al.. Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds: physicochemical characterization and in vitro evaluation. J Drug Deliv Sci Technol 2013;23:215–23. https://doi.org/10.1016/S1773-2247(13)50033-5.Search in Google Scholar

31. Paulus, EF, Kurz, M, Matter, H, Vértesy, L. Solid-state and solution structure of the salinomycin-sodium complex: stabilization of different conformers for an ionophore in different environments. J Am Chem Soc 1998;120:8209–21. https://doi.org/10.1021/ja973607x.Search in Google Scholar

32. HyperChem Inc. HyperChem 7.0. Gainesville, FL: Hypercube; 2001.Search in Google Scholar

33. Jorgensen, WL, Maxwell, DS, Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225–36. https://doi.org/10.1021/ja9621760.Search in Google Scholar

34. Stewart, JJP. Optimization of parameters for semiempirical methods. I. Method. J Comput Chem 1989;10:209–20. https://doi.org/10.1002/jcc.540100208.Search in Google Scholar

35. Andrews, JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001;48:5–16. https://doi.org/10.1093/jac/48.suppl_1.5.Search in Google Scholar PubMed

36. Nakamoto, K. Infrared and Raman spectroscopy of inorganic and coordination compounds, 5th ed. Toronto: Wiley; 1997.Search in Google Scholar

37. Dorsey, AF, Fransen, MF, Diamond, GL, Amata, RJ. Toxicological profile for strontium. USA: Agency for Toxic Substances and Disease Registry; 2004.Search in Google Scholar

38. Moffett, D, Smith, C, Stevens, YW, Ingerman, L, Swarts, S, Chappell, L. Toxicological profile for barium and barium compounds. USA: Agency for Toxic Substances and Disease Registry; 2007.Search in Google Scholar

Published Online: 2022-04-11

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2021-0201/html
Scroll to top button