Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 11, 2017

A thermodynamic model for the solubility of HfO2(am) in the aqueous K + – HCO3 − – CO32 − –  OH − – H2O system

  • Dhanpat Rai EMAIL logo , Akira Kitamura and Kevin M. Rosso
From the journal Radiochimica Acta

Abstract

Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg−1 to 0.1 mol·kg−1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH)2(CO3)22− and Hf(CO3)56−. The log10K0 values for the reactions [Hf4++2CO32−+2OH⇌Hf(OH)2(CO3)22−] and [Hf4++5CO32−⇌Hf(CO3)56−], based on the SIT model, were determined to be 44.53±0.46 and 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.

Acknowledgments

The experiments were conducted at Pacific Northwest National Laboratory (PNNL), Richland, WA. The authors acknowledge financial support from Japan Atomic Energy Agency to interpret the experimental data and draft this article. We thank Mr. Yuanxian Xia for help with the experimental work.

Appendix

Table A.1:

Concentrations of different elements in 0.0036 μm filtrates from HfO2(am) suspensions equilibrated for 4 days in KHCO3 solutions.

SamplepHlog10 [Mi]((mol·dm−3)a
KHCO3 (initially added)CHf
601–49.328−3.000−3.072−9.336
602–48.855−2.398−2.471−8.268
603–48.715−2.000−2.002−7.413
604–48.440−1.699−1.727−6.052
605–48.317−1.398−1.475−4.494
606–48.254−1.155−1.288−3.676
607–48.249−1.000−1.061−3.184
608–4b8.298−0.699−0.781−2.675
609–4b8.385−0.398NV−2.553
610–4b8.436−0.222NV−2.534
611–4b8.422−0.097NV−2.540
612–4b8.4550.000NV−2.536
  1. aMi stands for KHCO3, C, or Hf concentrations. NV, no value.

  2. bAll of the HfO2(am) solid that was initially added dissolved completely in these samples. Therefore, these samples cannot be used for thermodynamic analyses of data.

Table A.2:

M4+ (where M=Th, U, Np, Pu, Zr, or Hf) 8-coordinate apparent cation radius (A°) and the values of equilibrium constants for the formation of M(CO3)56− and M(CO3)44− (data plotted in Figure 5).

M4 +Cation radius (r)a1/r2log10 β50blog10 β40cReference
Th(IV)1.050.907031.00±0.7NV[10]
U(IV)1.001.000034.00±0.935.12±0.93[8]
Np(IV)0.981.041235.62±1.0738.91±0.55[8]
Pu(IV)0.961.085135.65±1.1337±1.0[8]
Zr(IV)0.841.4172~43d42.9±1.0e[26]
Hf(IV)0.831.451641.53±0.4640.16±0.24This study
  1. aM4+ 8-coordinate apparent cationic radii in A° from Shannon [25].

  2. bEquilibrium constant for the reaction M4++5CO32−=M(CO3)56−.

  3. cEquilibrium constant for the reaction M4++CO32−=M(CO3)44−. NV, No value.

  4. dThe log10K0 value we calculate from the relationship in Figure 5a for the Zr reaction in this column is 41.3 as compared to an approximate value (~43) for this reaction reported by Pouchon et al. [26].

  5. eValue calculated by Brown et al. [7] from the quoted reference.

References

1. Rai, D., Xia, Y., Hess, N. J., Strachan, D. M., McGrail, B. P.: Hydroxo and chloro complexes/ion-interactions of Hf4+ and the solubility product of HfO2(am). J. Solution Chem. 30, 949 (2001).10.1023/A:1013337925441Search in Google Scholar

2. Rai, D., Kitamura, A., Rosso, K. M., Sasaki, T., Kobayashi, T.: Issues concerning the determination of solubility products of sparingly soluble crystalline solids: solubility of HfO2(cr). Radiochim. Acta 104, 583 (2016).10.1515/ract-2015-2540Search in Google Scholar

3. Cerefice, G., Draye, M., Noyes, K. L., Czerwinski, K.: Environmental behavior of hafnium for the disposal of weapons-grade plutonium. Available from: http://www.wmsym.org/archives/1998/sess48/48-04/48-04.htm (1998).Search in Google Scholar

4. Dervin, J.: Sur la structure et la stabilité des carbonates complexes de Thorium(IV), Cerium(IV), Zirconium(IV), Hafnium(IV). Ph. D. Dissertation. Univ. of Reims Champagne-Ardenne (1972).Search in Google Scholar

5. João, A., Bigot, S., Fromage, F.: Etude des carbonates complexes des éléments IVB II – Détermination des constants d’équilibre de formamtion des tétracarbonatozirconate (IV) et -hafnate (IV). Bull. Soc. Chim. Fr. 6, 943 (1987).Search in Google Scholar

6. Karlysheva, K. F., Chumakova, L. S., Malinko, L. A., Sheka, I. A.: Reactioin of zirconium and hafnium oxide chlorides with sodium carbonate in solution. Russ. J. Inorg. Chem. 27, 1582 (1982).10.1002/chin.198312020Search in Google Scholar

7. Brown, P. L., Curti, E., Grambow, B.: Chemical thermodynamics of zirconium. Elsevier B. V., Amsterdam (2005), p. 512.Search in Google Scholar

8. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H.: Update on the chemical thermodynamics of uranium, plutonium, americium, and technetium. Elsevier B. V., Amsterdam (2003), p. 919.Search in Google Scholar

9. Östhols, E., Bruno, J., Grenthe, I.: On the influence of carbonate on mineral dissolution: III. The solubility of microcrystalline ThO2 in CO2-H2O media. Geochim. Cosmochim. Acta 58, 613 (1994).10.1016/0016-7037(94)90492-8Search in Google Scholar

10. Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical thermodynamics of thorium. Organisation for Economic Co-operation and Development, Paris (2008), p. 900.Search in Google Scholar

11. Felmy, A. R.: GMIN: A computerized chemical equilibrium model using a constrained minimization of the Gibbs free energy. PNL-7281, Pacific Northwest National Laboratory, Richland (1990).10.2172/6950668Search in Google Scholar

12. Sterner, S. M., Felmy, A. R., Rustad, J. R., Pitzer, K. S.: Thermodynamic analysis of aqueous solutions using INSIGHT. PNWD-SA-4436, Pacific Northwest National Laboratory, Richland (1997), p. 107.Search in Google Scholar

13. Rai, D., Felmy, A. R., Ryan, J. L.: Uranium(IV) hydrolysis constants and solubility product of UO2.xH2O(am). Inorg. Chem. 29, 260 (1990).10.1021/ic00327a022Search in Google Scholar

14. Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M.: A Thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH- -H2O system. Radiochim. Acta 84, 159 (1999).10.1524/ract.1999.84.3.159Search in Google Scholar

15. Rai, D., Hess, N. J., Xia, Y., Rao, L., Cho, H. M., Moore, R. C., Van Loon, L. R.: Comprehensive thermodynamic model applicable to highly acidic to basic conditions for isosaccharinate reactions with Ca(II) and Np(IV). J. Solution Chem. 32, 665 (2003).10.1023/B:JOSL.0000002988.99769.cbSearch in Google Scholar

16. Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M., Vitorge, P.: A thermodynamic model for the solubility of PuO2(am) in the aqueous K--HCO3--CO32--OH--H2O system. Radiochim. Acta 86, 89 (1999).10.1524/ract.1999.86.34.89Search in Google Scholar

17. Harvie, C. E., Moller, N., Weare, J. H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO2-H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta 48, 723 (1984).10.1016/0016-7037(84)90098-XSearch in Google Scholar

18. Rai, D., Felmy, A. R., Hess, N. J., Moore, D. A., Yui, M.: A thermodynamic model for the solubility of UO2(am) in the aqueous K+-Na+-HCO3--CO32--OH--H2O system. Radiochim. Acta 82, 17 (1998).10.1524/ract.1998.82.special-issue.17Search in Google Scholar

19. Lemire, R. J., Fuger, J., Nitsche, H., Potter, P., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., Wanner, H.: Chemical thermodynamics of neptunium and plutonium. Elsevier B. V., Amsterdam (2001), p. 845.Search in Google Scholar

20. Capdevila, H., Vitorge, P., Giffaut, E., Delmau, L.: Spectrophotometric study of the dissociation of the Pu(IV) carbonate limiting complex. Radiochim. Acta 74, 93 (1996).10.1524/ract.1996.74.special-issue.93Search in Google Scholar

21. Clark, D. L., Condradson, S. D., Keogh, D. W., Palmer, P. D., Scott, B. L., Tait, C. D.: Identificatioin of the limiting species in plutonium(IV) carbonate system. Solid state and solution molecular structure of the [Pu(CO3)5}6- ion. Inorg. Chem. 37, 2893 (1998).10.1021/ic971190qSearch in Google Scholar

22. Felmy, A. R., Rai, D., Sterner, S. M., Mason, M. J., Hess, N. J., Conradson, S. D.: Thermodynamic models for highly charged aqueous species: solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions. J. Solut. Chem. 26, 233 (1997).10.1007/BF02767996Search in Google Scholar

23. Voliotis, S., Rimsky, A.: Etude structurale des carbonates complexes de cérium et thorium: II. Structure cristalline et moléculaire du pentacarbonatothorate de guanidine tétrahydraté, [C(NH2)]6[Th(CO3)5]. Acta Crystallogr., Sect. B Struct. Sci. B31, 2611 (1975).10.1107/S0567740875008308Search in Google Scholar

24. Voliotis, S., Rimsky, A.: Etude structurale des carbonates complexes de cérium et thorium: III. Structure cristalline et moléculaire du pentacarbonatothorate de sodium dodécahydraté Na6[Th(CO3)5]. Acta Crystallogr., Sect. B: Struct. Sci. B31, 2620 (1975).10.1107/S056774087500831XSearch in Google Scholar

25. Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1970).10.1107/S0567739476001551Search in Google Scholar

26. Pouchon, M. A., Curti, E., Degueldre, C., Tobler, L.: The influence of carbonate complexes on the solubility of zirconia: new experimental data. Prog. Nucl. Energy 38, 443 (2001).10.1016/S0149-1970(00)00155-4Search in Google Scholar

Received: 2016-4-29
Accepted: 2017-1-31
Published Online: 2017-3-11
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2016-2623/html
Scroll to top button