Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 12, 2022

Beyond semiclassical time

  • Leonardo Chataignier ORCID logo EMAIL logo

Abstract

We show that the usual Born–Oppenheimer type of approximation used in quantum gravity, in which a semiclassical time parameter emerges from a weak-coupling expansion of the Wheeler–DeWitt constraint, leads to a unitary theory at least up to the next-to-leading order in minisuperspace models. As there are no unitarity-violating terms, this settles the issue of unitarity at this order, which has been much debated in the literature. Furthermore, we also show that the conserved inner product is gauge-fixed in the sense that the measure is related to the Faddeev–Popov determinant associated with the choice of semiclassical time as a reparametrization gauge. This implies that the Born–Oppenheimer approach to the problem of time is, in fact, an instance of a relational quantum theory, in which transition amplitudes can be related to conditional probabilities.


Corresponding author: Leonardo Chataignier, Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126, Bologna, Italy; and I.N.F.N., Sezione di Bologna, I.S. FLAG, viale B. Pichat 6/2, 40127, Bologna, Italy, E-mail:

Funding source: Università di Bologna

Award Identifier / Grant number: Unassigned

Acknowledgments

The author thanks Claus Kiefer, Manuel Krämer, Branislav Nikolić, and David Brizuela for useful discussions over the years; Alexander Y. Kamenshchik, Alessandro Tronconi, and Giovanni Venturi for interesting dialogues; and the Dipartimento di Fisica e Astronomia of the Università di Bologna as well as the I.N.F.N. Sezione di Bologna for financial support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. V. Kuchař, “Time and interpretations of quantum gravity,” Int. J. Mod. Phys. D, vol. 20, p. 3, 2011.10.1142/S0218271811019347Search in Google Scholar

[2] C. J. Isham, “Canonical quantum gravity and the problem of time,” NATO Sci. Ser. C, vol. 409, p. 157, 1993. https://doi.org/10.1007/978-94-011-1980-1_6.Search in Google Scholar

[3] C. Kiefer, Quantum Gravity, International Series of Monographs on Physics, vol 155, 3rd ed., Oxford, Oxford University Press, 2012.10.1093/oxfordhb/9780199298204.003.0024Search in Google Scholar

[4] E. Anderson, The Problem of Time, Fundamental Theories of Physics, vol. 190, Cham, Switzerland, Springer, 2017.10.1007/978-3-319-58848-3Search in Google Scholar

[5] B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory,” Phys. Rev., vol. 160, p. 1113, 1967. https://doi.org/10.1103/physrev.160.1113.Search in Google Scholar

[6] V. G. Lapchinsky and V. A. Rubakov, “Canonical quantization of gravity and quantum field theory in curved space-time,” Acta Phys. Pol. B, vol. 10, p. 1041, 1979.Search in Google Scholar

[7] T. Banks, “TCP, quantum gravity, the cosmological constant and all that...,” Nucl. Phys. B, vol. 249, p. 332, 1985. https://doi.org/10.1016/0550-3213(85)90020-3.Search in Google Scholar

[8] J. J. Halliwell and S. W. Hawking, “Origin of structure in the universe,” Phys. Rev. D, vol. 31, p. 1777, 1985. https://doi.org/10.1103/physrevd.31.1777.Search in Google Scholar

[9[a]] R. Brout, “On the concept of time and the origin of the cosmological temperature,” Found. Phys., vol. 17, p. 603, 1987. https://doi.org/10.1007/bf01882790.Search in Google Scholar

[b] R. Brout and G. Venturi, “Time in semiclassical gravity,” Phys. Rev. D, vol. 39, p. 2436, 1989. https://doi.org/10.1103/physrevd.39.2436.Search in Google Scholar

[10] T. P. Singh and T. Padmanabhan, “Notes on semiclassical gravity,” Ann. Phys. (N. Y.), vol. 196, p. 296, 1989. https://doi.org/10.1016/0003-4916(89)90180-2.Search in Google Scholar

[11] T. Padmanabhan and T. P. Singh, “On the semiclassical limit of the Wheeler-DeWitt equation,” Classical Quant. Grav., vol. 7, p. 411, 1990.https://doi.org/10.1088/0264-9381/7/3/015.Search in Google Scholar

[12] T. P. Singh, “Gravity induced corrections to quantum mechanical wavefunctions,” Classical Quant. Grav., vol. 7, p. L149, 1990. https://doi.org/10.1088/0264-9381/7/7/006.Search in Google Scholar

[13] C. Kiefer and T. P. Singh, “Quantum gravitational corrections to the functional Schrödinger equation,” Phys. Rev. D, vol. 44, p. 1067, 1991. https://doi.org/10.1103/physrevd.44.1067.Search in Google Scholar PubMed

[14] C. Bertoni, F. Finelli, and G. Venturi, “The Born - Oppenheimer approach to the matter - gravity system and unitarity,” Classical Quant. Grav., vol. 13, p. 2375, 1996. https://doi.org/10.1088/0264-9381/13/9/005.Search in Google Scholar

[15] C. Kiefer, “The semiclassical approximation to quantum gravity,” in Canonical Gravity: From Classical to Quantum, Lecture Notes in Physics, vol 434, J. Ehlers, and H. Friedrich, Eds., Berlin, Springer, 1994.10.1007/3-540-58339-4_19Search in Google Scholar

[16] R. Brout and R. Parentani, “Time in cosmology,” Int. J. Mod. Phys. D, vol. 8, p. 1, 1999. https://doi.org/10.1142/s0218271899000031.Search in Google Scholar

[17] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, “The Born-Oppenheimer method, quantum gravity and matter,” Classical Quant. Grav., vol. 35, p. 015012, 2018. https://doi.org/10.1088/1361-6382/aa8fb3.Search in Google Scholar

[18] C. Kiefer and D. Wichmann, “Semiclassical approximation of the Wheeler-DeWitt equation: arbitrary orders and the question of unitarity,” Gen. Relat. Gravit., vol. 50, p. 66, 2018. https://doi.org/10.1007/s10714-018-2390-4.Search in Google Scholar

[19] L. Chataignier, “Gauge fixing and the semiclassical interpretation of quantum cosmology,” Z. Naturforsch. A, vol. 74, p. 1069, 2019. https://doi.org/10.1515/zna-2019-0223.Search in Google Scholar

[20] C. Rovelli, “Quantum mechanics without time: a model,” Phys. Rev. D, vol. 42, p. 2638, 1990. https://doi.org/10.1103/physrevd.42.2638.Search in Google Scholar PubMed

[21[a]] C. Rovelli, “What is observable in classical and quantum gravity?” Classical Quant. Grav., vol. 8, p. 297, 1991. https://doi.org/10.1088/0264-9381/8/2/011.Search in Google Scholar

[b] C. Rovelli, “Quantum reference systems,” Classical Quant. Grav., vol. 8, p. 317, 1991. https://doi.org/10.1088/0264-9381/8/2/012.Search in Google Scholar

[22] C. Rovelli, “Time in quantum gravity: an hypothesis,” Phys. Rev. D, vol. 43, p. 442, 1991. https://doi.org/10.1103/physrevd.43.442.Search in Google Scholar PubMed

[23] B. Dittrich, “Partial and complete observables for Hamiltonian constrained systems,” Gen. Relat. Gravit., vol. 39, p. 1891, 2007. https://doi.org/10.1007/s10714-007-0495-2.Search in Google Scholar

[24] B. Dittrich, “Partial and complete observables for canonical general relativity,” Classical Quant. Grav., vol. 23, p. 6155, 2006. https://doi.org/10.1088/0264-9381/23/22/006.Search in Google Scholar

[25] J. Tambornino, “Relational observables in gravity: a review,” Sigma, vol. 8, p. 017, 2012.10.3842/SIGMA.2012.017Search in Google Scholar

[26] L. Chataignier, “Construction of quantum Dirac observables and the emergence of WKB time,” Phys. Rev. D, vol. 101, p. 086001, 2020. https://doi.org/10.1103/physrevd.101.086001.Search in Google Scholar

[27] A. Vanrietvelde, P. A. Höhn, F. Giacomini, and E. Castro-Ruiz, “A change of perspective: switching quantum reference frames via a perspective-neutral framework,” Quantum, vol. 4, p. 225, 2020. https://doi.org/10.22331/q-2020-01-27-225.Search in Google Scholar

[28] P. A. Höhn and A. Vanrietvelde, “How to switch between relational quantum clocks,” New J. Phys., vol. 22, p. 123048, 2020. https://doi.org/10.1088/1367-2630/abd1ac.Search in Google Scholar

[29] P. A. Höhn, “Switching internal times and a new perspective on the ‘wave Function of the universe’,” Universe, vol. 5, p. 116, 2019. https://doi.org/10.3390/universe5050116.Search in Google Scholar

[30] P. A. Höhn, A. R. H. Smith, and M. P. E. Lock, “Trinity of relational quantum dynamics,” Phys. Rev. D, vol. 104, p. 066001, 2021. https://doi.org/10.1103/physrevd.104.066001.Search in Google Scholar

[31] L. Chataignier, “Relational observables, reference frames, and conditional probabilities,” Phys. Rev. D, vol. 103, p. 026013, 2021. https://doi.org/10.1103/physrevd.103.026013.Search in Google Scholar

[32] P. A. Höhn, A. R. H. Smith, and M. P. E. Lock, “Equivalence of approaches to relational quantum dynamics in relativistic settings,” Front. in Phys., vol. 9, p. 181, 2021.10.3389/fphy.2021.587083Search in Google Scholar

[33] L. Chataignier, Timeless Quantum Mechanics and the Early Universe, Springer Theses, Cham, Switzerland, Springer, 2022.10.1007/978-3-030-94448-3Search in Google Scholar

[34] M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln,” Ann. Phys. (Berlin), vol. 389, p. 457, 1927. https://doi.org/10.1002/andp.19273892002.Search in Google Scholar

[35] L. S. Cederbaum, “Born-Oppenheimer approximation and beyond for time-dependent electronic processes,” J. Chem. Phys., vol. 128, p. 124101, 2008. https://doi.org/10.1063/1.2895043.Search in Google Scholar

[36] A. Abedi, N. T. Maitra, and E. K. U. Gross, “Exact factorization of the time-dependent electron-nuclear wave function,” Phys. Rev. Lett., vol. 105, p. 123002, 2010. https://doi.org/10.1103/physrevlett.105.123002.Search in Google Scholar

[37] J. C. Arce, “ Unification of the conditional probability and semiclassical interpretations for the problem of time in quantum theory,” Phys. Rev. A, vol. 85, p. 042108, 2012. https://doi.org/10.1103/physreva.85.042108.Search in Google Scholar

[38] L. D. Faddeev and V. N. Popov, “Feynman diagrams for the Yang-Mills field,” Phys. Lett. B, vol. 25, p. 29, 1967. https://doi.org/10.1016/0370-2693(67)90067-6.Search in Google Scholar

[39[a]] L. D. Faddeev and V. N. Popov, “Covariant quantization of the gravitational field,” Sov. Phys. Usp., vol. 16, p. 777, 1974. https://doi.org/10.1070/pu1974v016n06abeh004089.Search in Google Scholar

[b] L. D. Faddeev and V. N. Popov, “Covariant quantization of the gravitational field,” Usp. Fiz. Nauk, vol. 111, p. 427, 1973. https://doi.org/10.3367/ufnr.0111.197311b.0427.Search in Google Scholar

[40] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton, New Jersey, Princeton University Press, 1992.10.1515/9780691213866Search in Google Scholar

[41] D. Brizuela, C. Kiefer, and M. Krämer, “Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: the de Sitter case,” Phys. Rev. D, vol. 93, p. 104035, 2016. https://doi.org/10.1103/physrevd.93.104035.Search in Google Scholar

[42] D. Brizuela, C. Kiefer, and M. Krämer, “Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: the slow-roll approximation,” Phys. Rev. D, vol. 94, p. 123527, 2016. https://doi.org/10.1103/physrevd.94.123527.Search in Google Scholar

[43] C. Kiefer and M. Krämer, “Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum,” Phys. Rev. Lett., vol. 108, p. 021301, 2012. https://doi.org/10.1103/physrevlett.108.021301.Search in Google Scholar

[44] D. Bini, G. Esposito, C. Kiefer, M. Krämer, and F. Pessina, “On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity,” Phys. Rev. D, vol. 87, p. 104008, 2013. https://doi.org/10.1103/physrevd.87.104008.Search in Google Scholar

[45] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, “Inflation and quantum gravity in a Born-Oppenheimer context,” Phys. Lett. B, vol. 726, p. 518, 2013. https://doi.org/10.1016/j.physletb.2013.08.067.Search in Google Scholar

[46] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, “Signatures of quantum gravity in a Born-Oppenheimer context,” Phys. Lett. B, vol. 734, p. 72, 2014. https://doi.org/10.1016/j.physletb.2014.05.028.Search in Google Scholar

[47] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, “Quantum cosmology and the evolution of inflationary spectra,” Phys. Rev. D, vol. 94, p. 123524, 2016. https://doi.org/10.1103/physrevd.94.123524.Search in Google Scholar

[48a] A. Tronconi, G. P. Vacca, and G. Venturi, “Inflaton and time in the matter-gravity system,” Phys. Rev. D, vol. 67, p. 063517, 2003. https://doi.org/10.1103/physrevd.67.063517.Search in Google Scholar

[48b] A. Y. Kamenshchik, A. Tronconi, T. Vardanyan, and G. Venturi, “Quantum gravity, time, bounces, and matter,” Phys. Rev. D, vol. 97, p. 123517, 2018. https://doi.org/10.1103/physrevd.97.123517.Search in Google Scholar

[49] C. F. Steinwachs and M. L. van der Wild, “Quantum gravitational corrections from the Wheeler-DeWitt equation for scalar-tensor theories,” Classical Quant. Grav., vol. 35, p. 135010, 2018. https://doi.org/10.1088/1361-6382/aac587.Search in Google Scholar

[50] C. F. Steinwachs and M. L. van der Wild, “Quantum gravitational corrections to the inflationary power spectra in scalar-tensor theories,” Classical Quant. Grav., vol. 36, p. 245015, 2019. https://doi.org/10.1088/1361-6382/ab3a1b.Search in Google Scholar

[51] M. Bouhmadi-López, M. Krämer, J. Morais, and S. Robles-Pérez, “The interacting multiverse and its effect on the cosmic microwave background,” J. Cosmol. Astropart. Phys., vol. 02, p. 057, 2019. https://doi.org/10.1088/1475-7516/2019/02/057.Search in Google Scholar

[52] D. Brizuela, C. Kiefer, M. Krämer, and S. Robles-Pérez, “Quantum-gravity effects for excited states of inflationary perturbations,” Phys. Rev. D, vol. 99, p. 104007, 2019. https://doi.org/10.1103/physrevd.99.104007.Search in Google Scholar

[53] A. Y. Kamenshchik, A. Tronconi, and G. Venturi, arXiv:2010.15628, 2020.Search in Google Scholar

[54] L. Chataignier and M. Krämer, “Unitarity of quantum-gravitational corrections to primordial fluctuations in the Born-Oppenheimer approach,” Phys. Rev. D, vol. 103, p. 066005, 2021. https://doi.org/10.1103/physrevd.103.026013.Search in Google Scholar

[55] H. D. Zeh, “Time in quantum gravity,” Phys. Lett. A, vol. 126, p. 311, 1988. https://doi.org/10.1016/0375-9601(88)90842-0.Search in Google Scholar

[56] C. Kiefer, “Topology, decoherence, and semiclassical gravity,” Phys. Rev. D, vol. 47, p. 5414, 1993. https://doi.org/10.1103/physrevd.47.5414.Search in Google Scholar

[57] B. S. DeWitt, “Dynamical theory in curved spaces. I. A review of the classical and quantum action principles,” Rev. Mod. Phys., vol. 29, p. 377, 1957. https://doi.org/10.1103/revmodphys.29.377.Search in Google Scholar

[58] A. Barvinsky, “Unitarity approach to quantum cosmology,” Phys. Rep., vol. 230, p. 237, 1993. https://doi.org/10.1016/0370-1573(93)90032-9.Search in Google Scholar

[59] R. P. Woodard, “Enforcing the Wheeler-DeWitt constraint the easy way,” Classical Quant. Grav., vol. 10, p. 483, 1993. https://doi.org/10.1088/0264-9381/10/3/008.Search in Google Scholar

[60] J. Greensite, “Time and probability in quantum cosmology,” Nucl. Phys. B, vol. 342, p. 409, 1990. https://doi.org/10.1016/0550-3213(90)90196-k.Search in Google Scholar

[61] A. Y. Kamenshchik, A. Tronconi, T. Vardanyan, and G. Venturi, “Time in quantum theory, the Wheeler-DeWitt equation and the Born-Oppenheimer approximation,” Int. J. Mod. Phys. D, vol. 28, p. 1950073, 2019. https://doi.org/10.1142/s0218271819500731.Search in Google Scholar

[62] C. Lämmerzahl, “A Hamilton operator for quantum optics in gravitational fields,” Phys. Lett. A, vol. 203, p. 12, 1995.10.1016/0375-9601(95)00345-4Search in Google Scholar

[63] N. C. Tsamis and R. P. Woodard, “Gauge problems with the equations of motion,” Classical Quant. Grav., vol. 2, p. 841, 1985. https://doi.org/10.1088/0264-9381/2/6/011.Search in Google Scholar

Received: 2022-04-13
Accepted: 2022-04-24
Published Online: 2022-05-12
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2022-0106/html
Scroll to top button