Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 25, 2022

From maximum force to physics in 9 lines and towards relativistic quantum gravity

  • Christoph Schiller ORCID logo EMAIL logo

Abstract

A compact summary of present fundamental physics is given and evaluated. Its 9 lines describe all observations exactly and contain both general relativity and the standard model of particle physics. Their precise agreement with experiments, in combination with their extreme simplicity and their internal consistency, suggest that there are no experimental effects beyond the two theories. The combined properties of the 9 lines also imply concrete suggestions for the microscopic constituents in a complete theory of relativistic quantum gravity. It is shown that the microscopic constituents cannot be described by a Lagrangian or by an equation of motion. Finally, the 9 lines specify the only decisive tests that allow checking any specific proposal for such a theory.


Corresponding author: Christoph Schiller, Motion Mountain Research, 81827 Munich, Germany, E-mail:

Funding source: Klaus Tschira Stiftung

Award Identifier / Grant number: Direct Grant

Acknowlegements

The author thanks Chandra Sivaram, Arun Kenath, Erik Baigar, Lucas Burns, Thomas Racey, Michael Good, Peter Woit, Louis Kauffman, Michel Talagrand, Luca Bombelli, Isabella Borgogelli Avveduti, Peter Schiller, Steven Carlip and an anonymous referee for discussions.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Data availability: There is no additional data available for this manuscript(if all experiments ever made are put aside).

  3. Research funding: Part of this work was supported by a grant of the Klaus Tschira Foundation.

  4. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. D. Wells, “The once and present standard model of elementary particle physics,” in Discovery Beyond the Standard Model of Elementary Particle Physics, Cham, Springer, 2020, pp. 51–69.10.1007/978-3-030-38204-9_2Search in Google Scholar

[2] C. M. Will, “The confrontation between general relativity and experiment,” Living Rev. Relativ., vol. 17, p. 4, 2014, arXiv:1403.7377 [gr-qc]. https://doi.org/10.12942/lrr-2001-4.Search in Google Scholar PubMed PubMed Central

[3] The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration:, R. Abbott, H. Abe, F. Acernese et al.. (LIGO scientific, VIRGO, KAGRA), tests of general relativity with GWTC-3, Preprint (2021), arXiv:2112.06861 [gr-qc].Search in Google Scholar

[4] M. Kramer, I. H. Stairs, R. N. Manchester et al.., “Strong-field gravity tests with the double pulsar,” Phys. Rev. X, vol. 11, p. 041050, 2021, arXiv:2112.06795 [astro-ph.HE].10.1007/978-3-540-74713-0_19Search in Google Scholar

[5] R. L. Workman, V. D. Burkert, V. Crede, et al.., “(Particle data group), review of particle physics,” Prog. Theor. Exp. Phys., vol. 2022, p. 083C01, 2022.10.1093/ptep/ptac097Search in Google Scholar

[6] L. D. Landau and E. M. Lifshitz, Mechanics: Volume 1, Course of Theoretical Physics, vol. 1, Oxford, Butterworth-Heinemann, 1976.Search in Google Scholar

[7] A. Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Phys., vol. 322, p. 891, 1905. https://doi.org/10.1002/andp.19053221004.Search in Google Scholar

[8] P. Antonini, M. Okhapkin, E. Goklu, and S. Schiller, “Test of constancy of speed of light with rotating cryogenic optical resonators,” Phys. Rev. A, vol. 71, no. R, p. 050101, 2005, arXiv:gr-qc/0504109. https://doi.org/10.1103/physreva.71.050101.Search in Google Scholar

[9] E. A. Rauscher, “The Minkowski metric for a mutlidimensional geometry,” Lett. Nuovo Cimento, vol. 7S2, p. 361, 1973. https://doi.org/10.1007/bf02735134.Search in Google Scholar

[10] H. J. Treder, “The planckions as largest elementary particles and as smallest test bodies,” Found. Phys., vol. 15, p. 161, 1985. https://doi.org/10.1007/bf00735287.Search in Google Scholar

[11] R. J. Heaston, “Identification of a superforce in the Einstein field equations,” J. Wash. Acad. Sci., vol. 80, p. 25, 1990.Search in Google Scholar

[12] V. de Sabbata and C. Sivaram, “On limiting field strengths in gravitation,” Found. Phys. Lett., vol. 6, p. 561, 1993. https://doi.org/10.1007/bf00662806.Search in Google Scholar

[13] C. Massa, “Does the gravitational constant increase?” Astrophys. Space Sci., vol. 232, p. 143, 1995. https://doi.org/10.1007/bf00627550.Search in Google Scholar

[14] L. Kostro and B. Lange, “Is c**4/G the greatest possible force in nature?” Phys. Essays, vol. 12, p. 182, 1999. https://doi.org/10.4006/1.3025362.Search in Google Scholar

[15] G. W. Gibbons, “The maximum tension principle in general relativity,” Found. Phys., vol. 32, p. 1891, 2002, arXiv:hep-th/0210109. https://doi.org/10.1023/a:1022370717626.10.1023/A:1022370717626Search in Google Scholar

[16] C. Schiller, “Maximum force and minimum distance: Physics in limit statements,” Preprint, 2003, arXiv:physics/0309118 [physics.gen-ph].Search in Google Scholar

[17] C. Schiller, “General relativity and cosmology derived from principle of maximum power or force,” Int. J. Theor. Phys., vol. 44, p. 1629, 2005, arXiv:physics/0607090. https://doi.org/10.1007/s10773-005-4835-2.Search in Google Scholar

[18] C. Schiller, “Simple derivation of minimum length, minimum dipole moment and lack of space-time continuity,” Int. J. Theor. Phys., vol. 45, p. 221, 2006. https://doi.org/10.1007/s10773-005-9018-7.Search in Google Scholar

[19] J. Barrow and G. Gibbons, “Maximum tension: with and without a cosmological constant,” Mon. Not. Roy. Astron. Soc., vol. 446, p. 3874, 2014. https://doi.org/10.1093/mnras/stu2378.Search in Google Scholar

[20] M. P. Dabrowski and H. Gohar, “Abolishing the maximum tension principle,” Phys. Lett. B, vol. 748, p. 428, 2015, arXiv:1504.01547 [gr-qc]. https://doi.org/10.1016/j.physletb.2015.07.047.Search in Google Scholar

[21] M. R. R. Good and Y. C. Ong, “Are black holes springlike?” Phys. Rev. D, vol. 91, p. 044031, 2015, arXiv:1412.5432 [gr-qc]. https://doi.org/10.1103/physrevd.91.044031.Search in Google Scholar

[22] Y. L. Bolotin, V. A. Cherkaskiy, A. V. Tur, and V. V. Yanovsky, “An ideal quantum clock and principle of maximum force,” Preprint, 2016, arXiv:1604.01945 [gr-qc].Search in Google Scholar

[23] V. Cardoso, T. Ikeda, C. J. Moore, and C. M. Yoo, “Remarks on the maximum luminosity,” Phys. Rev. D, vol. 97, p. 084013, 2018, arXiv:1803.03271 [gr-qc]. https://doi.org/10.1103/physrevd.97.084013.Search in Google Scholar

[24] Y. C. Ong, “GUP-corrected black hole thermodynamics and the maximum force conjecture,” Phys. Lett. B, vol. 785, p. 217, 2018, arXiv:1809.00442 [gr-qc]. https://doi.org/10.1016/j.physletb.2018.08.065.Search in Google Scholar

[25] J. D. Barrow, “Non-Euclidean Newtonian cosmology,” Classical Quantum Gravity, vol. 37, p. 125007, 2020, arXiv:2002.10155 [gr-qc]. https://doi.org/10.1088/1361-6382/ab8437.Search in Google Scholar

[26] J. D. Barrow, “Maximum force and naked singularities in higher dimensions,” Int. J. Mod. Phys. D, vol. 29, p. 2043008, 2020, arXiv:2005.06809 [gr-qc]. https://doi.org/10.1142/s0218271820430087.Search in Google Scholar

[27] J. D. Barrow and N. Dadhich, “Maximum force in modified gravity theories,” Phys. Rev. D, vol. 102, p. 064018, 2020, arXiv:2006.07338 [gr-qc]. https://doi.org/10.1103/physrevd.102.064018.Search in Google Scholar

[28] K. Atazadeh, “Maximum force conjecture in Kiselev, 4D-EGB and barrow corrected-entropy black holes,” Phys. Lett. B, vol. 820, p. 136590, 2021. https://doi.org/10.1016/j.physletb.2021.136590.Search in Google Scholar

[29] A. Jowsey and M. Visser, “Counterexamples to the maximum force conjecture,” Universe, vol. 7, 2021, arXiv:2102.01831 [gr-qc]. https://doi.org/10.3390/universe7110403.Search in Google Scholar

[30] V. Faraoni, “Maximum force and cosmic censorship,” Phys. Rev. D, vol. 103, p. 124010, 2021, arXiv:2105.07929 [gr-qc]. https://doi.org/10.1103/physrevd.103.124010.Search in Google Scholar

[31] C. Schiller, “Comment on “Maximum force and cosmic censorship”,” Phys. Rev. D, vol. 104, p. 068501, 2021, arXiv:2109.07700 [gr-qc]. https://doi.org/10.1103/physrevd.104.068501.Search in Google Scholar

[32] V. Faraoni, “Reply to “Comment on ‘Maximum force and cosmic censorship”,” Phys. Rev. D, vol. 104, p. 068502, 2021. https://doi.org/10.1103/physrevd.104.068502.Search in Google Scholar

[33] C. Schiller, “Tests for maximum force and maximum power,” Phys. Rev. D, vol. 104, p. 124079, 2021, arXiv:2112.15418 [gr-qc]. https://doi.org/10.1103/physrevd.104.124079.Search in Google Scholar

[34] C. Sivaram, A. Kenath, and C. Schiller, “From maximal force to the field equations of general relativity,” Preprint, 2021. https://doi.org/10.20944/preprints202109.0318.v1.Search in Google Scholar

[35] L. M. Cao, L. Y. Li, and L. B. Wu, “Bound on the rate of Bondi mass loss,” Phys. Rev. D, vol. 104, p. 124017, 2021, arXiv:2109.05973 [gr-qc]. https://doi.org/10.1103/physrevd.104.124017.Search in Google Scholar

[36] N. Dadhich, “Maximum force for black holes and Buchdahl stars,” Preprint, 2022, arXiv:2201.10381 [gr-qc].10.1103/PhysRevD.105.064044Search in Google Scholar

[37] C. J. Hogan, “Energy flow in the universe,” NATO Sci. Ser. C, vol. 565, p. 283, 2001, arXiv:astro-ph/9912110.10.1007/978-94-010-0540-1_13Search in Google Scholar

[38] V. G. Gurzadyan and A. Stepanian, “Hubble tension and absolute constraints on the local Hubble parameter,” Preprint, 2021, arXiv:2108.07407 [astro-ph.CO].10.1051/0004-6361/202141736Search in Google Scholar

[39] S. Di Gennaro, M. R. R. Good, and Y. C. Ong, “Black hole Hookean law and thermodynamic fragmentation: insights from the maximum force conjecture and Ruppeiner geometry,” Phys. Rev. Res., vol. 4, p. 023031, 2022, arXiv:2108.13435 [gr-qc]. https://doi.org/10.1103/physrevresearch.4.023031.Search in Google Scholar

[40] A. Kenath, C. Schiller, and C. Sivaram, “From maximum force to the field equations of general relativity – and implications, to appear in,” Int. J. Mod. Phys., 2022, arXiv:2205.06302 [gr-qc].10.1142/S0218271822420196Search in Google Scholar

[41] A. Loeb, “Four novel observational tests of general relativity,” Preprint, 2022, arXiv:2205.02746.Search in Google Scholar

[42] A. Jowsey and M. Visser, “Reconsidering maximum luminosity,” Int. J. Mod. Phys. D, vol. 30, p. 2142026, 2021, arXiv:2105.06650 [gr-qc]. https://doi.org/10.1142/s0218271821420268.Search in Google Scholar

[43] G. E. Volovik, “Negative Newton constant may destroy some conjectures,” Mod. Phys. Lett. A, vol. 37, p. 2250034, 2022, arXiv:2202.12743 [gr-qc]. https://doi.org/10.1142/s0217732322500341.Search in Google Scholar

[44] D. W. Sciama, “Gravitational radiation and general relativity,” Phys. Bull., vol. 24, p. 657, 1973. https://doi.org/10.1088/0031-9112/24/11/016.Search in Google Scholar

[45] C. Sivaram, “A general upper limit on the mass and entropy production of a cluster of supermassive objects,” Astrophys. Space Sci., vol. 86, p. 501, 1982. https://doi.org/10.1007/bf00683354.Search in Google Scholar

[46] L. Kostro, “The quantity c**5/G interpreted as the greatest possible power in nature,” Phys. Essays, vol. 13, p. 143, 2000. https://doi.org/10.4006/1.3025423.Search in Google Scholar

[47] C. Schiller, “From maximum force via the hoop conjecture to inverse square gravity,” Gravitation Cosmol., vol. 28, p. 305, 2022. https://doi.org/10.1134/s0202289322030082.Search in Google Scholar

[48] K. S. Thorne, “Nonspherical gravitational collapse–a short review,” in Magic Without Magic: John Archibald Wheeler, J. Klauder, Ed., San Francisco, Freeman, 1972, pp. 231–258.Search in Google Scholar

[49] S. Hod, “Introducing the inverse hoop conjecture for black holes,” Eur. Phys. J. C, vol. 80, p. 1148, 2020, arXiv:2101.05290 [gr-qc]. https://doi.org/10.1140/epjc/s10052-020-08732-y.Search in Google Scholar

[50] G. Liu and Y. Peng, “A conjectured universal relation for black holes and horizonless compact stars,” Nucl. Phys. B, vol. 970, p. 115485, 2021. https://doi.org/10.1016/j.nuclphysb.2021.115485.Search in Google Scholar

[51] M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, Leipzig, JA Barth, 1906.Search in Google Scholar

[52] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, 2019.10.1515/9783110638738Search in Google Scholar

[53] M. Bartelmann, B. Feuerbacher, T. Krüger, D. Lüst, A. Rebhan, and A. Wipf, Theoretische Physik 3 — Quantenmechanik, Berlin, Heidelberg, Springer, 2018.10.1007/978-3-662-56072-3Search in Google Scholar

[54] A. Zagoskin, Quantum Mechanics: A Complete Introduction, Mobius, 2015.Search in Google Scholar

[55] J. Lévy-Leblond and F. Balibar, Quantique: rudiments, Enseignement de la physique, Paris, Masson, 1998.Search in Google Scholar

[56] G. Cohen-Tannoudji, Les constantes universelles, Questions de sciences, Paris, Hachette, 1991.Search in Google Scholar

[57] L. B. Okun, “Cube or hypercube of natural units,” in Multiple Facets Of Quantization And Supersymmetry: Michael Marinov Memorial Volume, M. Olshanetsky and A. Vainshtein, Singapore, World Scientific, 2002, pp. 670–675. arXiv:hep-ph/0112339.10.1142/9789812777065_0036Search in Google Scholar

[58] D. Oriti, “The Bronstein hypercube of quantum gravity,” in Beyond Spacetime, N. Huggett, K. Matsubara and C. Wüthrich, Cambridge, Cambridge University Press, 2020, pp. 25–52. arXiv:1803.02577 [physics.hist-ph].10.1017/9781108655705.003Search in Google Scholar

[59] J. Uffink and J. van Lith, “Thermodynamic uncertainty relations,” Found. Phys., vol. 29, p. 655, 1999. https://doi.org/10.1023/a:1018811305766.10.1023/A:1018811305766Search in Google Scholar

[60] A. E. Shalyt-Margolin and A. Y. Tregubovich, “Generalized uncertainty relation in thermodynamics,” Preprint, 2003, arXiv:gr-qc/0307018.Search in Google Scholar

[61] Y. Hasegawa, “Thermodynamic bounds via bulk-boundary correspondence: speed limit, thermodynamic uncertainty relation, and Heisenberg principle,” Preprint, 2022, arXiv:2203.12421 [cond-mat.stat-mech].Search in Google Scholar

[62] L. Szilard, “Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen,” Z. Phys., vol. 53, p. 840, 1929. https://doi.org/10.1007/bf01341281.Search in Google Scholar

[63] L. Brillouin, Science and Information Theory, Dover Books on Physics, Dover Publications, 2013.Search in Google Scholar

[64] H. W. Zimmermann, “Die Entropie von Teilchen und ihre Quantisierung,” Z. Phys. Chem., vol. 195, p. 1, 1996. https://doi.org/10.1524/zpch.1996.195.part_1_2.001.Search in Google Scholar

[65] H. W. Zimmermann, “Plancks Strahlungsgesetz und die Quantisierung der Entropie,” Ber. Bunsenges. Phys. Chem., vol. 91, p. 1033, 1987. https://doi.org/10.1002/bbpc.19870911011.Search in Google Scholar

[66] H. W. Zimmermann, “Über die Quantisierung der Entropie und die Verteilungsfunktionen von Boltzmann, Bose-Einstein und Fermi-Dirac,” Ber. Bunsenges. Phys. Chem., vol. 92, p. 81, 1988. https://doi.org/10.1002/bbpc.198800016.Search in Google Scholar

[67] H. W. Zimmermann, “Particle Entropies and entropy quanta. I. The ideal gas,” Z. Phys. Chem., vol. 214, p. 187, 2000. https://doi.org/10.1524/zpch.2000.214.2.187.Search in Google Scholar

[68] H. W. Zimmermann, “Particle Entropies and entropy quanta II. The photon gas,” Z. Phys. Chem., vol. 214, p. 347, 2000. https://doi.org/10.1524/zpch.2000.214.2.187.Search in Google Scholar

[69] H. W. Zimmermann, “Particle Entropies and entropy quanta. III. The van der Waals gas,” Z. Phys. Chem., vol. 216, p. 615, 2002. https://doi.org/10.1524/zpch.2002.216.5.615.Search in Google Scholar

[70] H. W. Zimmermann, “Particle Entropies and entropy quanta: IV. The ideal gas, the second law of thermodynamics, and the P–t uncertainty relation,” Z. Phys. Chem., vol. 217, p. 55, 2003. https://doi.org/10.1524/zpch.217.1.55.18963.Search in Google Scholar

[71] H. W. Zimmermann, “Particle Entropies and entropy quanta V. The P–t uncertainty relation,” Z. Phys. Chem., vol. 217, p. 1097, 2003. https://doi.org/10.1524/zpch.217.9.1097.20410.Search in Google Scholar

[72] J. Garcia-Bellido, “Quantum black holes,” Preprint, 1993, arXiv:hep-th/9302127.Search in Google Scholar

[73] L. Liao and P. Shou-Yong, “Sommerfeld’s quantum condition of action and the spectra of quantum schwarzschild black hole,” Chin. Phys. Lett., vol. 21, p. 1887, 2004. https://doi.org/10.1088/0256-307x/21/10/006.Search in Google Scholar

[74] A. KirwanJr, “Intrinsic photon entropy? The darkside of light,” Int. J. Eng. Sci., vol. 42, p. 725, 2004. https://doi.org/10.1016/j.ijengsci.2003.09.005.Search in Google Scholar

[75] M. Meschke, W. Guichard, and J. P. Pekola, “Single-mode heat conduction by photons,” Nature, vol. 444, p. 187, 2006. https://doi.org/10.1038/nature05276.Search in Google Scholar PubMed

[76] D. Kothawala, T. Padmanabhan, and S. Sarkar, “Is gravitational entropy quantized?” Phys. Rev. D, vol. 78, p. 104018, 2008, arXiv:0807.1481 [gr-qc]. https://doi.org/10.1103/physrevd.78.104018.Search in Google Scholar

[77] Y. X. Liu, S. W. Wei, R. Li, and J. R. Ren, “Quantization of black hole entropy from quasinormal modes,” J. High Energy Phys., vol. 2009, p. 076, 2009. https://doi.org/10.1088/1126-6708/2009/03/076.Search in Google Scholar

[78] J. R. Ren, L. Y. Jia, and P. J. Mao, “Entropy quantization of d-dimensional Gauss–Bonnet black holes,” Mod. Phys. Lett., vol. 25, p. 2599, 2010. https://doi.org/10.1142/s0217732310033827.Search in Google Scholar

[79] Y. V. Dydyshka and A. E. Shalyt-Margolin, “Black hole quantum entropy and its minimal value,” Nonlinear Phenom. Complex Syst., vol. 16, p. 255, 2013, arXiv:1303.1444 [physics.gen-ph].Search in Google Scholar

[80] A. Bakshi, B. R. Majhi, and S. Samanta, “Gravitational surface Hamiltonian and entropy quantization,” Phys. Lett. B, vol. 765, p. 334, 2017. https://doi.org/10.1016/j.physletb.2016.12.036.Search in Google Scholar

[81] L. Yu and D. J. Qi, “Spectroscopy of the rotating Kaluza-Klein spacetime via revisited adiabatic invariant quantity,” Int. J. Theor. Phys., vol. 56, p. 2151, 2017. https://doi.org/10.1007/s10773-017-3357-z.Search in Google Scholar

[82] Q. Q. Jiang, “Revisit emission spectrum and entropy quantum of the Reissner–Nordström black hole,” Eur. Phys. J. C, vol. 72, p. 2086, 2012. https://doi.org/10.1140/epjc/s10052-012-2086-y.Search in Google Scholar

[83] A. A. Varlamov, A. V. Kavokin, and Y. M. Galperin, “Quantization of entropy in a quasi-two-dimensional electron gas,” Phys. Rev. B, vol. 93, p. 155404, 2016. https://doi.org/10.1103/physrevb.93.155404.Search in Google Scholar

[84] K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, “Measurement of the quantum of thermal conductance,” Nature, vol. 404, p. 974, 2000. https://doi.org/10.1038/35010065.Search in Google Scholar PubMed

[85] K. Schwab, J. Arlett, J. Worlock, and M. Roukes, “Thermal conductance through discrete quantum channels,” Phys. E, vol. 9, p. 60, 2001. https://doi.org/10.1016/s1386-9477(00)00178-8.Search in Google Scholar

[86] K. Schwab, “Information on heat,” Nature, vol. 444, p. 161, 2006. https://doi.org/10.1038/444161a.Search in Google Scholar PubMed

[87] M. Partanen, K. Y. Tan, J. Govenius, et al.., “Quantum-limited heat conduction over macroscopic distances,” Nat. Phys., vol. 12, p. 460, 2016. https://doi.org/10.1038/nphys3642.Search in Google Scholar PubMed PubMed Central

[88] F. Márkus and K. Gambár, “Minimum entropy production effect on a quantum scale,” Entropy, vol. 23, no. 10, p. 1350, 2021. https://doi.org/10.3390/e23101350.Search in Google Scholar PubMed PubMed Central

[89] B. Lavenda, “Statistical physics: a probabilistic approach,” in Dover Books on Physics, Dover Publications, 2016.Search in Google Scholar

[90] R. Olf, F. Fang, G. E. Marti, A. MacRae, and D. M. Stamper-Kurn, “Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature,” Nat. Phys., vol. 11, p. 720, 2015. https://doi.org/10.1038/nphys3408.Search in Google Scholar

[91] W. Pauli, “Relativistic field theories of elementary particles,” Rev. Mod. Phys., vol. 13, p. 203, 1941. https://doi.org/10.1103/revmodphys.13.203.Search in Google Scholar

[92] J. A. Heras, “Can Maxwell’s equations be obtained from the continuity equation?” Am. J. Phys., vol. 75, p. 652, 2007. https://doi.org/10.1119/1.2739570.Search in Google Scholar

[93] L. Burns, “Maxwell’s equations are universal for locally conserved quantities,” Adv. Appl. Clifford Algebras, vol. 29, p. 1, 2019. https://doi.org/10.1007/s00006-019-0979-7.Search in Google Scholar

[94] G. Gabrielse, S. E. Fayer, T. G. Myers, and X. Fan, “Towards an improved test of the standard model’s most precise prediction,” Atoms, vol. 7, p. 45, 2019, arXiv:1904.06174 [quant-ph]. https://doi.org/10.3390/atoms7020045.Search in Google Scholar

[95] S. Borsanyi, Z. Fodor, J. N. Guenther, et al.., “Leading hadronic contribution to the muon magnetic moment from lattice qcd,” Nature, vol. 593, p. 51, 2021. https://doi.org/10.1038/s41586-021-03418-1.Search in Google Scholar PubMed

[96] B. Abi, T. Albahri, S. Al-Kilani, et al.., “(Muon g-2), measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Phys. Rev. Lett., vol. 126, p. 141801, 2021, arXiv:2104.03281 [hep-ex].10.1103/PhysRevLett.126.141801Search in Google Scholar PubMed

[97] CDF Collaboration, T. Aaltonen, S. Amerio, D. Amidei, et al.., “(CDF), High-precision measurement of the W boson mass with the CDF II detector,” Science, vol. 376, p. 170, 2022.10.1126/science.abk1781Search in Google Scholar PubMed

[98] M. Veltman, Diagrammatica: The Path to Feynman Diagrams, Cambridge, Cambridge University Press, 1994, pp. 249–272.10.1017/CBO9780511564079.015Search in Google Scholar

[99] C. A. Mead, “Possible connection between gravitation and fundamental length,” Phys. Rev., vol. 135, p. B849, 1964. https://doi.org/10.1103/physrev.135.b849.Search in Google Scholar

[100] J. Ellis, J. Espinosa, G. Giudice, A. Hoecker, and A. Riotto, “The probable fate of the standard model,” Phys. Lett. B, vol. 679, p. 369, 2009. https://doi.org/10.1016/j.physletb.2009.07.054.Search in Google Scholar

[101] M. Shifman, “Musings on the current status of hep,” arXiv preprint arXiv:2001.00101, 2019).10.1142/S0217732320300037Search in Google Scholar

[102] D. Hilbert, “Naturerkennen und Logik,” in Dritter Band: Analysis · Grundlagen der Mathematik · Physik · Verschiedenes, Berlin & Heidelberg, Springer, 1935, pp. 378–387.10.1007/978-3-662-38452-7_24Search in Google Scholar

[103] S. Hossenfelder, C. Marletto, and V. Vedral, “Quantum effects in the gravitational field,” Nature, vol. 549, p. 31, 2017. https://doi.org/10.1038/549031a.Search in Google Scholar PubMed

[104] J. D. Bekenstein, “Universal upper bound on the entropy-to-energy ratio for bounded systems,” Phys. Rev. D, vol. 23, p. 287, 1981. https://doi.org/10.1103/physrevd.23.287.Search in Google Scholar

[105] B. Mirza, Z. Mirzaiyan, and H. Nadi, “Maximum rate of entropy emission,” Ann. Phys., vol. 415, p. 168117, 2020. https://doi.org/10.1016/j.aop.2020.168117.Search in Google Scholar

[106] M. Gardner, Riddles of the Sphinx and Other Mathematical Puzzle Tales, Mathematical Association of America, 1987, p. 47.10.5948/UPO9780883859476Search in Google Scholar

[107] G. Weber, “Thermodynamics at boundaries,” Nature, vol. 365, p. 792, 1993. https://doi.org/10.1038/365792a0.Search in Google Scholar

[108] A. Addazi, J. Alvarez-Muniz, R. A. Batista, et al.., “Quantum gravity phenomenology at the dawn of the multi-messenger era—a review,” Prog. Part. Nucl. Phys., vol. 125, p. 103948, 2022.10.1016/j.ppnp.2022.103948Search in Google Scholar

[109] C. Schiller, “A conjecture on deducing general relativity and the standard model with its fundamental constants from rational tangles of strands,” Phys. Part. Nucl., vol. 50, p. 259, 2019. https://doi.org/10.1134/s1063779619030055.Search in Google Scholar

[110] C. Schiller, “Testing a conjecture on the origin of the standard model,” Eur. Phys. J. Plus, vol. 136, p. 79, 2021. https://doi.org/10.1140/epjp/s13360-020-01046-8.Search in Google Scholar

[111] C. Schiller, “Testing a conjecture on the origin of space, gravity and mass,” Indian J. Phys., vol. 96, p. 3047, 2022. https://doi.org/10.1007/s12648-021-02209-8.Search in Google Scholar

[112] C. Schiller, “Testing a conjecture on quantum electrodynamics,” J. Geom. Phys., vol. 178, p. 104551, 2022. https://doi.org/10.1016/j.geomphys.2022.104551.Search in Google Scholar

[113] M. Botta Cantcheff, “Spacetime geometry as statistic ensemble of strings,” arXiv:1105.3658, 2011.Search in Google Scholar

[114] S. Carlip, “Dimension and dimensional reduction in quantum gravity,” Classical Quantum Gravity, vol. 34, p. 193001, 2017. https://doi.org/10.1088/1361-6382/aa8535.Search in Google Scholar

Received: 2022-09-19
Accepted: 2022-11-08
Published Online: 2022-11-25
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2022-0243/html
Scroll to top button