Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 4, 2019

Gas-Phase Reactions of the Group 10 Organometallic Cations, [(phen)M(CH3)]+ with Acetone: Only Platinum Promotes a Catalytic Cycle via the Enolate [(phen)Pt(OC(CH2)CH3)]+

  • Kim Greis , Allan J. Canty and Richard A. J. O’Hair EMAIL logo

Abstract

Electrospray ionisation of the ligated group 10 metal complexes [(phen)M(O2CCH3)2] (M = Ni, Pd, Pt) generates the cations [(phen)M(O2CCH3)]+, whose gas-phase chemistry was studied using multistage mass spectrometry experiments in an ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reactions (IMR). A new catalytic cycle has been discovered. In step 1, decarboxylation of [(phen)M(O2CCH3)]+ under CID conditions generates the organometallic cations [(phen)M(CH3)]+, which react with acetone to generate the [(phen)M(CH3)(OC(CH3)2)]+ adducts in competition with formation of the coordinated enolate for M = Pt (step 2). For M = Ni and Pd, the adducts regenerate [(phen)M(CH3)]+ upon CID. In the case of M = Pt, loss of methane is favored over loss of acetone and results in the formation of the enolate complex, [(phen)Pt(OC(CH2)CH3)]+. Upon further CID, both methane and CO loss can be observed resulting in the formation of the ketenyl and ethyl complexes [(phen)Pt(OCCH)]+ and [(phen)Pt(CH2CH3)]+ (step 3), respectively. In step 4, CID of [(phen)Pt(CH2CH3)]+ results in a beta-hydride elimination reaction to yield the hydride complex, [(phen)Pt(H)]+, which reacts with acetic acid to regenerate the acetate complex [(phen)Pt(O2CCH3)]+ and H2 in step 5. Thus, the catalytic cycle is formally closed, which corresponds to the decomposition of acetone and acetic acid into methane, CO, CO2, ethene and H2. All except the last step of the catalytic cycle are modelled using DFT calculations with optimizations of structures at the M06/SDD 6-31G(d) level of theory.

Acknowledgement

We thank the Australian Research Council for financial support DP180101187 (to RAJO and AJC). The authors gratefully acknowledge the generous allocation of computing time from the University of Tasmania and the National Computing Infrastructure (fz2). We thank the DAAD (ISAP program) for funding an exchange program between the Schools of Chemistry of Humboldt-Universität zu Berlin and The University of Melbourne. KG is grateful to the “Fondation Félix Chomé” for the “Bourse Chomé-Bastian” scholarship.

References

1. R. Gao, W.-H. Sun, C. Redshaw, Catal. Sci. Technol. 3 (2013) 1172.10.1039/c3cy20691bSearch in Google Scholar

2. V. P. Ananikov, ACS Catal. 5 (2015) 1964.10.1021/acscatal.5b00072Search in Google Scholar

3. C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062.10.1002/anie.201107017Search in Google Scholar PubMed

4. K. J. Bonney, F. Schoenebeck, Chem. Soc. Rev. 43 (2014) 6609.10.1039/C4CS00061GSearch in Google Scholar PubMed

5. R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Löffler, P. R. Wentrcek, G. Voss, T. Masuda, Science 259 (1993) 340.10.1126/science.259.5093.340Search in Google Scholar PubMed

6. M. Ravi, M. Ranocchiari, J. A. van Bokhoven, Angew. Chem. Int. Ed. 56 (2017) 16464.10.1002/anie.201702550Search in Google Scholar PubMed

7. M. M. Kappes, R. H. Staley, J. Am. Chem. Soc. 103 (1981) 1286.10.1021/ja00395a080Search in Google Scholar

8. D. K. Böhme, H. Schwarz, Angew. Chem. Int. Ed. 44 (2005) 2336.10.1002/anie.200461698Search in Google Scholar PubMed

9. R. A. J. O’Hair, Int. J. Mass Spectrom. 377 (2015) 121.10.1016/j.ijms.2014.05.003Search in Google Scholar

10. K. L. Vikse, J. S. McIndoe, Pure Appl. Chem. 87 (2015) 361.10.1515/pac-2014-1118Search in Google Scholar

11. K. L. Vikse, Z. Ahmadi, J. Scott McIndoe, Coord. Chem. Rev. 279 (2014) 96.10.1016/j.ccr.2014.06.012Search in Google Scholar

12. S. M. Lang, T. M. Bernhardt, Phys. Chem. Chem. Phys. 14 (2012) 9255.10.1039/c2cp40660hSearch in Google Scholar PubMed

13. L. Lukashuk, K. Foettinger, Johns. Matthey Technol. Rev. 62 (2018) 316.10.1595/205651318X15234323420569Search in Google Scholar

14. M. A. Bañares, Top. Catal. 52 (2009) 1301.10.1007/s11244-009-9313-2Search in Google Scholar

15. M. Woolley, G. N. Khairallah, G. da Silva, P. S. Donnelly, R. A. J. O’Hair, Organometallics 33 (2014) 5185.10.1021/om500493wSearch in Google Scholar

16. M. Woolley, A. Ariafard, G. N. Khairallah, K. H.-Y. Kwan, P. S. Donnelly, J. M. White, A. J. Canty, B. F. Yates, R. A. J. O’Hair, J. Org. Chem. 79 (2014) 12056.10.1021/jo501886wSearch in Google Scholar PubMed

17. R. A. J. O’Hair, N. J. Rijs, Acc. Chem. Res. 48 (2015) 329.10.1021/ar500377uSearch in Google Scholar PubMed

18. R. A. J. O’Hair, ChemComm (2006) 1469.Search in Google Scholar

19. M. J. Woolley, G. N. Khairallah, P. S. Donnelly, R. A. J. O’Hair, Rapid Commun. Mass Spectrom. 25 (2011) 2083.10.1002/rcm.5087Search in Google Scholar PubMed

20. M. J. Woolley, G. N. Khairallah, G. da Silva, P. S. Donnelly, B. F. Yates, R. A. J. O’Hair, Organometallics 32 (2013) 6931.10.1021/om400358qSearch in Google Scholar

21. R. A. J. O’Hair, A. K. Vrkic, P. F. James, J. Am. Chem. Soc. 126 (2004) 12173.10.1021/ja048476wSearch in Google Scholar PubMed

22. J. Zabicky, The Chemistry of Metal Enolates. Part 1, Wiley, Chichester (2009).Search in Google Scholar

23. L. R. Domingo, J. Andrés, In: PATAI’S Chemistry of Functional Groups, Z. Rappoport (Ed.), Vol. 47, John Wiley & Sons, Ltd, Chichester, UK (2009), p. 4223.Search in Google Scholar

24. D. A. Culkin, J. F. Hartwig, J. Am. Chem. Soc. 123 (2001) 5816.10.1021/ja015732lSearch in Google Scholar PubMed

25. J. H. Price, A. N. Williamson, R. F. Schramm, B. B. Wayland, Inorg. Chem. 11 (1972) 1280.10.1021/ic50112a025Search in Google Scholar

26. F. P. Fanizzi, G. Natile, M. Lanfranchi, A. Tiripicchio, F. Laschi, P. Zanello, Inorg. Chem. 35 (1996) 3173.10.1021/ic960125ySearch in Google Scholar PubMed

27. B. Soro, S. Stoccoro, G. Minghetti, A. Zucca, M. A. Cinellu, S. Gladiali, M. Manassero, M. Sansoni, Organometallics 24 (2005) 53.10.1021/om040102oSearch in Google Scholar

28. W. A. Donald, C. J. McKenzie, R. A. J. O’Hair, Angew. Chem. Int. Ed. 50 (2011) 8379.10.1002/anie.201102146Search in Google Scholar PubMed

29. A. K. Y. Lam, C. Li, G. Khairallah, B. B. Kirk, S. J. Blanksby, A. J. Trevitt, U. Wille, R. A. J. O’Hair, G. da Silva, Phys. Chem. Chem. Phys. 14 (2012) 2417.10.1039/c2cp22970fSearch in Google Scholar PubMed

30. W. A. Donald, G. N. Khairallah, R. A. J. O’Hair, J. Am. Soc. Mass Spectrom. 24 (2013) 811.10.1007/s13361-013-0625-xSearch in Google Scholar PubMed

31. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT (2009).Search in Google Scholar

32. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.10.1007/s00214-007-0310-xSearch in Google Scholar

33. D. Andrae, U. Huermann, M. Dolg, H. Stoll, H. Preu, Theoret. Chim. Acta 77 (1990) 123.10.1007/BF01114537Search in Google Scholar

34. G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.10.1063/1.460447Search in Google Scholar

35. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

36. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.10.1063/1.3382344Search in Google Scholar PubMed

37. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456.10.1002/jcc.21759Search in Google Scholar PubMed

38. A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639.10.1063/1.438980Search in Google Scholar

39. S. A. McLuckey, D. E. Goeringer, J. Mass Spectrom. 32 (1997) 461.10.1002/(SICI)1096-9888(199705)32:5<461::AID-JMS515>3.0.CO;2-HSearch in Google Scholar

40. P. D. Dau, P. B. Armentrout, M. C. Michelini, J. K. Gibson, Phys. Chem. Chem. Phys. 18 (2016) 7334.10.1039/C6CP00494FSearch in Google Scholar PubMed

41. B. Butschke, H. Schwarz, Organometallics 29 (2010) 6002.10.1021/om100757eSearch in Google Scholar

42. E. J. Alexanian, J. F. Hartwig, J. Am. Chem. Soc. 130 (2008) 15627.10.1021/ja8056908Search in Google Scholar PubMed

43. M. Shindo, In: PATAI’S Chemistry of Functional Groups. Z. Rappoport. (Ed.), Vol. 63, John Wiley & Sons, Ltd, Chichester, UK (2009), p. 10.Search in Google Scholar

44. J. Liu, B. T. Heaton, J. A. Iggo, R. Whyman, ChemComm (2004) 1326.10.1039/B402275KSearch in Google Scholar

45. G. S. Hill, L. M. Rendina, R. J. Puddephatt, J. Chem. Soc., Dalton Trans. 85 (1996) 1809.10.1039/DT9960001809Search in Google Scholar

46. I. Toth, T. Kegl, C. J. Elsevier, L. Kollar, Inorg. Chem. 33 (1994) 5708.10.1021/ic00103a017Search in Google Scholar

47. M. Lesslie, Y. Yang, A. J. Canty, E. Piacentino, F. Berthias, P. Maitre, V. Ryzhov, R. A. J. O’Hair, ChemComm 54 (2018) 346.Search in Google Scholar

48. Y. Kayaki, H. Tsukamoto, M. Kaneko, I. Shimizu, A. Yamamoto, M. Tachikawa, T. Nakajima, J. Organomet. Chem. 622 (2001) 199.10.1016/S0022-328X(00)00916-5Search in Google Scholar

49. M. Gómez-Gallego, M. A. Sierra, Chem. Rev. 111 (2011) 4857.10.1021/cr100436kSearch in Google Scholar PubMed

50. P. J. Derrick, Mass Spectrom. Rev. 2 (1983) 285.10.1002/mas.1280020204Search in Google Scholar

51. L. Mole, J. L. Spencer, N. Carr, A. G. Orpen, Organometallics 10 (1991) 49.10.1021/om00047a026Search in Google Scholar

52. T. Waters, R. A. J. O’Hair, A. G. Wedd, J. Am. Chem. Soc. 125 (2003) 3384.10.1021/ja028839xSearch in Google Scholar PubMed

53. While the bare acetic acid enolate anion is a stable species in the gas-phase, it is less stable than the acetate anion by over 80 kJ mol−1 and exhibits different reactivity: R. A. J. O’Hair, S. Gronert, C. H. DePuy, J. H. Bowie, J. Am. Chem. Soc., 111 (1989) 3105.10.1021/ja00190a077Search in Google Scholar

54. H. Heiberg, L. Johansson, O. Gropen, O. B. Ryan, O. Swang, M. Tilset, J. Am. Chem. Soc. 122 (2000) 10831.10.1021/ja0019171Search in Google Scholar


Article note

Part of the special issue of the Zeitschrift für Physikalische Chemie (ZPC) on “Gas Phase Model Systems for Catalysis”.



Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1355).


Received: 2018-11-30
Accepted: 2019-01-28
Published Online: 2019-03-04
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1355/html
Scroll to top button