DOI QR코드

DOI QR Code

Cellular Protective Effect and Liposome Formulation for Enhanced Transdermal Delivery of Isoquercitrin

Isoquercitrin의 세포 보호 작용과 피부 흡수 증진을 위한 리포좀 제형 연구

  • Jo, Na-Rae (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Gu, Hyun-A (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Su-Ah (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Han, Seat-Byeol (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology)
  • 조나래 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 구현아 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수아 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 한샛별 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소)
  • Received : 2012.03.29
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

In this study, the cellular protective effect of isoquercitrin against $H_2O_2$ and rose bengal-indued HaCaT cell damage was investigated. The ethosome and elastic liposome for enhanced transdermal delivery were prepared. Particle size, loading efficiency and cumulative permeated amounts of them were evaluated. Isoquercitrin didn't show any characteristic cytotoxicity at 50 ${\mu}M$. When HaCaT cells were treated with 5 mM $H_2O_2$ and 25 ${\mu}M$ rose bengal, isoquercitrin protected the cells against the oxidative damage in a concentration dependent manner (6.25 ~ 50 ${\mu}M$). The size of 0.03 % isoquercitrin loaded ethosome was 222.85 nm and the loading efficiency was 82.26 %. The ethosome loaded with 0.03 % isoquercitrin was stable and maintained the constant particle size for 2 weeks after being prepared. The ethosome exhibited more enhanced skin permeability than general liposome and ethanol solution. The optimal ratio of lipid to surfactant of 0.1 % isoquercitrin loaded elastic liposomes was observed to be 89 : 5 through evaluating particle size (341.2 nm), deformability index (59.89), loading efficiency (54.3 %), and skin permeability (54.4 %).

본 연구에서는 $H_2O_2$와 rose bengal로 처리된 HaCaT 세포에 있어서 isoquercitrin의 세포 보호 효과를 조사하였다. Isoquercitrin의 피부 전달시스템으로 에토좀 및 탄성 리포좀을 제조하고 입자크기, 포집효율 및 피부 흡수 증진 능력을 평가하였다. Isoquercitrin은 HaCaT 세포에 대해 50 ${\mu}M$의 농도에서 독성을 나타내지 않았다. 5 mM의 $H_2O_2$ 및 25 ${\mu}M$의 rose bengal로 HaCaT 세포를 처리하였을 때 isoquercitrin은 산화적 손상에 대항하여 농도 의존적(6.25 ~ 50 ${\mu}M$)으로 세포 보호 효과를 나타내었다. 0.03 % Isoquercitrin을 담지한 에토좀의 입자 크기는 222.85 nm, 포집효율은 82.26 %였다. 0.03 % isoquercitrin 함유 에토좀은 제조 후 2주일 동안 안정하였고, 일정한 입자 크기를 유지하였다. 피부 투과 실험 결과 에토좀은 일반 리포좀이나 에탄올 용액에서 보다 우수한 피부 투과능을 보여주었다. 0.1 % Isoquercitrin을 담지한 탄성 리포좀의 최적의 제형은 입자 크기(341.2 nm), 가변형성(59.89), 포집효율(54.3 %) 및 피부투과능 (초기 적하량 대비 54.4 %) 확인을 통해 인지질 대 계면활성제의 비율이 85 : 15인 제형이 가장 우수한 탄성 리포좀 제형임을 나타내었다.

Keywords

References

  1. H. C. Wulf, J. Sandby-Moller, T. Kobayasi, and R. Gniadecki, Skin aging and natural photoprotection, Micron, 35(3), 185 (2004). https://doi.org/10.1016/j.micron.2003.11.005
  2. J. Pincemail, Free radicals and antioxidants in human diseases. In analysis of free radicals in biology systems, ed. A. E. Favier, J. Cadet, B. Kalyanaraman, M. Fontecave, and J.-L. Pierre, 83, Birkhauser Verlag Basel, Switzerland (1995).
  3. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, Singlet oxygen production by human eosinophils. J. Biol. Chem., 263, 9692 (1988).
  4. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation. Photodermatology, 2, 15 (1985).
  5. A. Oikarinen and M. Kallioinen, A biochemical and immunohistochemical study of collagen in sunexposed and protected skin. Photodermatology, 6, 24 (1989).
  6. L. H. Kilgman, UVA induced biochemical changes in hairless mouse skin collagen: A contrast to UVB effects. Biological responses to Ultraviolet A Radiation, ed. F. Urbach, 209 Valdemar, Overland Park (1992).
  7. K. Scharffetter-Kochanek, Photoaging of the connective tissues of skin: Its prevention and therapy, antioxidants in disease mechanism and therapy. Adv. Pharmacol., 38, 639 (1997)
  8. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  9. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet a induced synthesis of interstitial collagenase, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  10. L. Packer, Utraviolet radiation (UVA, UVB) and skin antioxidants, In: Free radical damage and its control, eds. C. A. Rice-Evans and R. H. Burdon, Elsevier Science B.V., 239 (1994).
  11. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: Its prevention and therapy, In: Antioxidants in disease mechanisms and therapy, eds. H. Sies, Advances Pharmacology (1997).
  12. J. J. Thiele, C. O. Barland, R. Ghadially, and P. M. Elias, Permeability and antioxidant Barriers in aged epidermis, Skin Aging (B. A. Gilchrest, J. Krutman, eds), Springer-Verlag Berlin Heidelberg, Germay, 65 (2006).
  13. S. N. Park, Skin aging and antioxidants, J. Soc. Cosmet. Scienctists Korea, 23(1), 75 (1997).
  14. M. Choe, K. C. Han, and H. S. Kim, Incorporation efficiency and stability of antioxidant nutrients entrapped in liposome, Kor. J. Gerontol., 11(1), 21 (2001).
  15. G. E. El Maghraby, B. W. Carry, and A. C. Williams, Liposome and skin: From drug delivery to model membrane, Eur. J. Parm. Sci., 34(4-5), 203 (2008). https://doi.org/10.1016/j.ejps.2008.05.002
  16. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery, Int. J. Pharm., 332(1-2), 60 (2007).
  17. E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties, J. Control. Release, 65(3), 403 (2000). https://doi.org/10.1016/S0168-3659(99)00222-9
  18. V. M. Knepp, R. S. Hinz, F. C. Szoka, and R. H. Guy, Controlled drug release from a novel liposomal delivery system. I. Investigation of transdermal potential, J. Control. Release, 5(3), 211 (1988). https://doi.org/10.1016/0168-3659(88)90020-X
  19. V. M. Knepp, F. C. Szoka, and R. H. Guy, Controlled drug release from a novel liposomal delivery system. II. Transdermal delivery characteristics Original Research Article. J. Control. Release, 12(1), 25 (1990). https://doi.org/10.1016/0168-3659(90)90179-W
  20. H. J. Gwak and B. S. Jin, Preparation and Characterization of EGCG Entrapped ethosome, J. Korean Ind. Eng. Chem., 18(2), 130 (2007).
  21. E. Touito, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406 (2000). https://doi.org/10.1002/1098-2299(200007/08)50:3/4<406::AID-DDR23>3.0.CO;2-M
  22. E. Touito, V. M. Meidan, and E. Horwitz, Methods for quantitative determination of drug localized in the skin, J. Control. Release, 56, 7 (1998). https://doi.org/10.1016/S0168-3659(98)00060-1
  23. V. Dubey, D. Mishra, T. Dutta, M. Nahar, D. K. Saraf, and N. K. Jain, Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposmoes, J. Control. Release, 123, 148 (2007). https://doi.org/10.1016/j.jconrel.2007.08.005
  24. V. Dubey, D. Mishra, and N. K. Jain, Melatonin loaded ethanolic liposomes; Physicochemical characterization and enhanced transdermal delivery, Eur. J. Pharm. Biopharm., 67, 398 (2007). https://doi.org/10.1016/j.ejpb.2007.03.007
  25. P. L. Honeywell-Nguyen, H. W. Wouter Groenink, A. M. de Graaff, and J. A. Bouwstra, The in vivo transport of elastic vesicles into human skin: Effects of occlusion, volume and duration of application. J. Controlled Release, 90, 243 (2003). https://doi.org/10.1016/S0168-3659(03)00202-5
  26. G. Ceve, A. Schatzlein, and H. Richardsen, Ultradeformable lipid vesicles can penetrate the skin and other semipermeable barriers unfragmented. Evidence from double lable CLSM experiments and direct size measurements, Biochim. Biophys. Acta, 1546, 21 (2002).
  27. Q. Chang, Z. Zuo, M. S. S. Chow, and W. K. Ho, Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats, Eur. J. Pharm. Biopharm., 59(3), 549 (2005). https://doi.org/10.1016/j.ejpb.2004.10.004
  28. C. G. Silva, R. J. Raulino, D. M. Cerqueira, S. C. Mannarino, M. D. Pereira, A. D. Panek, J. F. M. Silva, F. S. Menezes, and E. C. A. Eleutherio ,In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata, Phytomedicine, 16, 761 (2009). https://doi.org/10.1016/j.phymed.2008.12.019
  29. H. Inaba, M. Tagashira, D. Honma, T. Kanda, Y. Kou, Y. Ohtake, and A. Amano, Identification of hop polyphenolic components which inhibit prostaglandin E2 production by gingival epithelial cells stimulated with periodontal pathogen. Biol. Pharm. Bull., 31, 527 (2008). https://doi.org/10.1248/bpb.31.527
  30. A. P. Rogerio, A. Kanashiro, C. Fontanari, E. V. G. da Silva, Y. M. Lucisano-Valim, E. G. Soares, and L. H. Faccioli, Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res., 56(10), 402 (2007). https://doi.org/10.1007/s00011-007-7005-6
  31. D. Zielinska, W. Wiczkowski, and M. K. Piskula, Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods. J Agric. Food Chem., 56, 3524 (2008). https://doi.org/10.1021/jf073521f
  32. J. E. Kim, H. J. Lee, M. S. Lim, M. A. Park, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of persicaria hydropiper L. Extract, J. Soc. Cosmet. Scientists Kroea, 38(1), 15 (2012). https://doi.org/10.15230/SCSK.2012.38.1.015
  33. Y. P. Fang, Y. H. Tsai, P. C. Wu, and Y. B. Huang, Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy, Int. J. Pharm., 356, 144 (2008). https://doi.org/10.1016/j.ijpharm.2008.01.020
  34. D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers, J. Control. Release, 106, 99 (2005). https://doi.org/10.1016/j.jconrel.2005.04.007
  35. Y. P. Fang, Y. B. Huang, P. C. Wu, and Y. H. Tsai, Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior, Eur. J. Pharm. Biopharm., 73, 391 (2009). https://doi.org/10.1016/j.ejpb.2009.07.011
  36. B. Mohamed, S. Khaled, and A. O. Abdullah, Influence of the flexible liposomes on the skin deposition of a hydrophilic model drug, carboxyfluorescein: Dependency on their composition, The Scientific World Journal, 2012, 9 (2012).
  37. A. Gillet, F. Lecomte, P. Hubert, E. Ducat, B. Evrard, and G. Piel, Skin penetration behaviour of liposomes as a function of their composition, Eur. J. Pharm. Biopharm., 79, 43 (2011). https://doi.org/10.1016/j.ejpb.2011.01.011
  38. S. Jain, N. Jain, D. Bhadra, A. K. Tiwary, and N. K. Jain, Transdermal delivery of an analgesic agent using elastic liposomes: Preparation, characterization and performance evaluation, Curr. Drug Delivery, 2, 223 (2005). https://doi.org/10.2174/1567201054368020
  39. S. D. Maurya, S. Aggarwal, V. K. Tilak, R. C. Dhakar, A. Singh, and G. Maurya, Enhanced transdermal delivery of indinavir sulfate via transfersome, Pharmacie Globale, 1(06) (2010).
  40. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta, 1104, 226 (1992). https://doi.org/10.1016/0005-2736(92)90154-E

Cited by

  1. Antioxidant Activities of Ipomoea batatas L. Lam. (Purple Sweet Potato) Extracts Cultured in Korea vol.40, pp.4, 2014, https://doi.org/10.15230/SCSK.2014.40.4.423
  2. Screening of Effective Extraction Conditions for Increasing Antioxidant Activities of Licorice Extracts from Various Countries of Origin vol.39, pp.4, 2013, https://doi.org/10.15230/SCSK.2013.39.4.259
  3. Antioxidative Effects and Tyrosinase Inhibitory Activities of Mate (Ilex paraguariensis) Extract/Fractions vol.41, pp.4, 2015, https://doi.org/10.15230/SCSK.2015.41.4.391
  4. Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1058
  5. Melanin Synthesis Inhibitory Effect of Eriobotryae Folium Extracts & Eriobotryae Folium and Phreatic Water Mixture vol.38, pp.4, 2017, https://doi.org/10.13048/jkm.17040
  6. Characterization and Transdermal Delivery of Ethosomes Loaded with Eucommia ulmoides Extract vol.24, pp.6, 2013, https://doi.org/10.14478/ace.2013.1090