DOI QR코드

DOI QR Code

Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System

분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교

  • 박준규 (한양대학교 부설 산업과학연구소) ;
  • 박성욱 (한양대학교 기계공학부)
  • Received : 2023.02.16
  • Accepted : 2023.03.14
  • Published : 2023.03.31

Abstract

In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

Keywords

References

  1. B. A. Bruno, D. A. Santavicca and J. V. Zello, "LIF characterization of intake valve fuel films during cold start in a PFI engine", SAE Transactions, 2002, pp. 1500~1516.
  2. Y. Wang, G. Wilkinson and J. Drallmeier, "Parametric study on the fuel film breakup of a cold start PFI engine", Experiments in Fluids, Vol. 37, 2004, pp. 385~398. https://doi.org/10.1007/s00348-004-0827-x
  3. C. Lohfink, H. Baecker and M. Tichy, "Experimental investigation on catalyst-heating strategies and potential of GDI combustion systems", SAE Technical Paper, 2008, Report No. 0148-7191.
  4. S. Ahn, J. Cho, S. Baek, K. Kim, J. Ko, C.-L. Myung, et al., "Comparative investigation of gaseous emissions and particle emission characteristics from turbo-charged direct injection (DI) engine with gasoline and LPG fuel depending on engine control parameters", International Journal of Automotive Technology, Vol. 21, 2020, pp. 451~457. https://doi.org/10.1007/s12239-020-0042-7
  5. H. Oh, J. Lee, S. Han, C. Park, C. Bae, J. Lee, et al., "Effect of injector nozzle hole geometry on particulate emissions in a downsized direct injection gasoline engine", SAE Technical Paper, 2017. Report No.: 0148-7191.
  6. M. Potenza, M. Milanese and A. de Risi, "Effect of injection strategies on particulate matter structures of a turbocharged GDI engine", Fuel, Vol. 237, 2019, pp. 413~428. https://doi.org/10.1016/j.fuel.2018.09.130
  7. M. Zhang, W. Hong, F. Xie, Y. Su, L. Han and B. Wu, "Experimental investigation of impacts of injection timing and pressure on combustion and particulate matter emission in a spray-guided gdi engine", International Journal of Automotive Technology, Vol. 19, 2018, pp. 393~ 404. https://doi.org/10.1007/s12239-018-0038-8
  8. F. Biagiotti, F. Bonatesta, S. Tajdaran, D. D. Sciortino, S. Verma, E. Hopkins, et al., "Modelling liquid film in modern GDI engines and the impact on particulate matter emissions-Part 1", International Journal of Engine Research, Vol. 23, No. 10, 2022, pp. 1634~1657. https://doi.org/10.1177/14680874211024476
  9. E. W. Lemmon, M. L. Huber and M. O. McLinden, "NIST reference fluid thermodynamic and transport properties-REFPROP", NIST Standard Reference Database, Vol. 23, 2002, v7.
  10. T. Kim, D. Kim and S. Park, "Numerical approach to analyze propane flash boiling spray using modified gas-jet model", Applied Thermal Engineering, Vol. 162, 2019, pp. 114255.
  11. K.-B. Kim, Y.-J. Kim, K.-H. Lee and K.-S. Lee, "Experimental approaches to investigating liquefied LPG spray characteristics", Atomization and Sprays, Vol. 20, No. 6, 2010.
  12. J. Lacey, F. Poursadegh, M. Brear, P. Petersen, C. Lakey, S. Ryan, et al., "Optical characterization of propane at representative spark ignition, gasoline direct injection conditions." SAE Technical Paper, 2016, Report No.: 0148-7191.
  13. J. Lacey, F. Poursadegh, M. Brear, R. Gordon, P. Petersen, C. Lakey, et al., "Generalizing the behavior of flash-boiling, plume interaction and spray collapse for multi-hole, direct injection." Fuel, Vol. 200, 2017, pp. 345~56. https://doi.org/10.1016/j.fuel.2017.03.057
  14. K. Kim, J. Kim, S. Oh, C. Kim and Y. Lee, "Lower particulate matter emissions with a stoichiometric LPG direct injection engine." Fuel, Vol. 187, 2017, pp. 197~210. https://doi.org/10.1016/j.fuel.2016.09.058
  15. Y. S. Yu, S. Yang, M. Jeong, H. Kim, H. Yi, J. H. Park, et al., "Experimental investigations on the spray structure and nozzle tip wetting using various fuels with an LPDI injector", Fuel, Vol. 318, 2022, pp. 123719.
  16. I. Schmitz, W. Ipp and A. Leipertz, "Flash boiling effects on the development of gasoline direct-injection engine sprays", SAE Transactions, 2002, pp. 1025~1032.
  17. R. D. Oza and J. F. Sinnamon, "An experimental and analytical study of flash-boiling fuel injection", SAE Transactions, 1983, pp. 948~962.
  18. D. Kim and S. Park, "Effects of nozzle hole configuration of a multi-hole type gasoline direct injector on spray development under flash boiling conditions", International Journal of Engine Research, Vol. 22, No. 9, 2021, pp. 2997~3012. https://doi.org/10.1177/1468087420960026
  19. A. Wood, G. Wigley, J. Helie, editors, "Flash Boiling Sprays produced by a 6-hole GDI Injector", 17th International Symposium on Applications of Laser Techniques To Fluid Mechanics, 2014.
  20. S. Wu, M. Xu, D. L. Hung, T. Li and H. Pan, "Near-nozzle spray and spray collapse characteristics of spark-ignition direct-injection fuel injectors under sub-cooled and superheated conditions", Fuel, Vol. 183, 2016, pp. 322~334. https://doi.org/10.1016/j.fuel.2016.06.080