Skip to main content
Log in

Thermal stability of WAlN/WAlON/Al2O3-based solar selective absorber coating

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The solar absorptance property of W/WAlN/WAlON/Al2O3-based coatings, deposited by DC/RF magnetron sputtering on stainless steel substrate was studied by measuring the reflectance spectra in the wavelength range of 250 - 2500 nm. The effect of thermal annealing on the optical properties of the solar selective absorber coatings was investigated. Annealing the coatings at 450°C for 150 hrs in air did not show any significant change in the spectral properties of the absorber coating indicating the excellent thermal stability of the coating. The W layer acts as infrared reflective layer and diffusion barrier on stainless steel substrate. The top Al2O3 layer serves as dense shield to protect the under layers from oxidation in air. In summary, the present study indicates the potential application of W/WAlN/WAlON/Al2O3-based selective coatings in high temperature photo thermal conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barlev, R. Vidu and P. Stroeve, Solar Energy Materials and Solar Cells 95 (10), 2703–2725 (2011).

    Article  CAS  Google Scholar 

  2. X. Py, Y. Azoumah and R. Olives, Renewable and Sustainable Energy Reviews 18, 306–315 (2013).

    Article  Google Scholar 

  3. C. Atkinson, C. L. Sansom, H. J. Almond and C. P. Shaw, Renewable and Sustainable Energy Reviews 45, 113–122 (2015).

    Article  CAS  Google Scholar 

  4. C. E. Kennedy, Review of mid-to high-temperature solar selective absorber materials. (National Renewable Energy Laboratory Golden Colorado, 2002).

  5. N. Selvakumar and H. C. Barshilia, Solar energy materials and solar cells 98, 1–23 (2012).

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Wang, D. Lei and C. Wang, Solar Energy Materials and Solar Cells 127, 143–146 (2014).

    Article  CAS  Google Scholar 

  7. L. Rebouta, A. Pitães, M. Andritschky, P. Capela, M. F. Cerqueira, A. Matilainen and K. Pischow, Surface and Coatings Technology 211, 41–44 (2012).

    Article  CAS  Google Scholar 

  8. L. Rebouta, A. Sousa, M. Andritschky, F. Cerqueira, C. J. Tavares, P. Santilli and K. Pischow, Applied surface science 356, 203–212 (2015).

    Article  CAS  Google Scholar 

  9. A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia and B. Basu, Solar energy materials and solar cells (Submitted) (2016).

  10. H. C. Barshilia, N. Selvakumar, K. S. Rajam and A. Biswas, Solar Energy Materials and Solar Cells 92 (4), 495–504 (2008).

    Article  CAS  Google Scholar 

  11. T. Soga, Nanostructured materials for solar energy conversion. (Elsevier, 2006).

  12. B. O. Seraphin, Spectrally selective surfaces and their impact on photothermal solar energy conversion. (Springer, 1979).

  13. Y. Xue, C. Wang, W. Wang, Y. Liu, Y. Wu, Y. Ning and Y. Sun, Solar Energy 96, 113–118 (2013).

    Article  CAS  Google Scholar 

  14. J. Feng, S. Zhang, X. Liu, H. Yu, H. Ding, Y. Tian and J. Ouyang, Vacuum 121, 135–141 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atasi Dan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan, A., Chattopadhyay, K., Barshilia, H.C. et al. Thermal stability of WAlN/WAlON/Al2O3-based solar selective absorber coating. MRS Advances 1, 2807–2813 (2016). https://doi.org/10.1557/adv.2016.388

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.388

Navigation