Skip to main content
Log in

Characterization of Graphene Gate Electrodes for Metal-Oxide-Semiconductor Devices

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We fabricate and characterize metal-oxide-semiconductor (MOS) devices with graphene as the gate electrode, 5 or 10 nm thick silicon dioxide as the insulator, and silicon as the semiconductor substrate. We find that Fowler-Nordheim tunneling dominates the gate current for the 10 nm oxide device. We also study the temperature dependence of the tunneling current in these devices in the range 77 to 300 K and extract the effective tunneling barrier height as a function of temperature for the 10 nm oxide device. Furthermore, by performing high frequency capacitance-voltage measurements, we observe a local capacitance minimum under accumulation, particularly for the 5 nm oxide device. By fitting the data using numerical simulations based on the modified density of states of graphene in the presence of charged impurities, we show that this local minimum results from the quantum capacitance of graphene. These results provide important insights for the heterogeneous integration of graphene into conventional silicon technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Park, S. M. Song, J. H. Mun, and B. J. Cho, Nano Lett. 11, 5383 (2011).

    Article  CAS  Google Scholar 

  2. A. Misra, M. Waikar, A. Gour, H. Kalita, M. Khare, M. Aslam, and A. Kottantharayil, Appl. Phys. Lett. 100, 233506 (2012).

    Article  Google Scholar 

  3. Y. An, A. Behnam, E. Pop, and A. Ural, Appl. Phys. Lett. 102, 013110 (2013).

    Article  Google Scholar 

  4. Y. An, A. Behnam, E. Pop, G. Bosnian, and A. Ural, J. Appl. Phys. 118, 114307 (2015).

    Article  Google Scholar 

  5. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, 1981).

  6. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley-Interscience, 1998).

  7. G. Salace, A. Hadjadj, C. Petit, and M. Jourdain, J. Appl. Phys. 85, 7768 (1999).

    Article  CAS  Google Scholar 

  8. G. Pananakakis, G. Ghibaudo, R. Kies, and C. Papadas, J. Appl. Phys. 78, 2635 (1995).

    Article  CAS  Google Scholar 

  9. Z. A. Weinberg, J. Appl. Phys. 53, 5052 (1982).

    Article  CAS  Google Scholar 

  10. T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).

    Article  Google Scholar 

  11. D. L. John, L. C. Castro, and D. L. Pulfrey, J. Appl. Phys. 96, 5180 (2004).

    Article  CAS  Google Scholar 

  12. F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Nano Lett. 9, 23 (2009).

    Article  CAS  Google Scholar 

  13. J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nanotechnol. 4, 505 (2009).

    Article  CAS  Google Scholar 

  14. S. Droscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, Appl. Phys. Lett. 96, 152104 (2010).

    Article  Google Scholar 

  15. H. Xu, Z. Zhang, and L.-M. Peng, Appl. Phys. Lett. 98, 133122 (2011).

    Article  Google Scholar 

  16. L. Wang, W. Wang, G. Xu, Z. Ji, N. Lu, L. Li, and M. Liu, Appl. Phys. Lett. 108, 013503 (2016).

    Article  Google Scholar 

  17. G. S. Kliros, in Graphene Science Handbook: Size-Dependent Properties, edited by M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, and J. L. Gervasoni (CRC Press, 2016).

  18. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).

  19. Q. Li, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 84, 115442 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Shekhawat, A., Behnam, A. et al. Characterization of Graphene Gate Electrodes for Metal-Oxide-Semiconductor Devices. MRS Advances 2, 103–108 (2017). https://doi.org/10.1557/adv.2017.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.65

Navigation