Skip to main content
Log in

Mechanical and Tribological Properties of Graphene Reinforced Natural Rubber Composites: A Molecular Dynamics Study

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene reinforced natural rubber composites are developed to study the improvement in mechanical and tribological properties of natural rubber by the introduction of graphene as reinforcement. Constant strain minimization method has been applied to calculate Young’s and shear modulus of developed structures. A three-layer model containing Fe (Iron) atoms at the top and bottom and polymer matrices in the middle has been constructed to calculate the tribological properties. A shear loading is applied to the top iron nanorod by sliding it to the surface of the polymer matrices for 600 ps with a velocity of 0.01 nm/ps. The results show the increase of 185% in Young’s modulus, 32% in shear modulus and 48% in hardness by reinforcing natural rubber with single-layer graphene oxide sheet, respectively. Also, reduction of 28% and 36% in the friction coefficient and abrasion rate obtained by the introduction of graphene oxide sheet in natural rubber matrix. Also, interaction energy between graphene and natural rubber, the angle, bond and kinetic energy of the polymer and composites has been calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442 (7100), 282–286 (2006).

    CAS  Google Scholar 

  2. J.W. Jiang, J.S. Wang, and B. Li, Physical Review B 80 (11), 113405 (2009).

    Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321 (5887), 385–388 (2008).

    CAS  Google Scholar 

  4. Y. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T.W. Chan, L. Zhang, Y. Liang, and L. Liu, Scientific Reports 3, 2508 (2013).

    Google Scholar 

  5. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, and N. Koratkar, ACS Nano 3 (12), 3884–3890 (2009).

    CAS  Google Scholar 

  6. N. Yan, G. Buonocore, M. Lavorgna, S. Kaciulis, S.K. Balijepalli, Y. Zhan, H. Xia, and L. Ambrosio, Composites Science and Technology 102, 74–81 (2014).

    CAS  Google Scholar 

  7. X. Wu, T.F. Lin, Z.H. Tang, B.C. Guo, and G.S. Huang, Express Polymer Letters 9 (8), 672–685 (2015).

    CAS  Google Scholar 

  8. X. She, C. He, Z. Peng, and L. Kong, Polymer 55 (26), 6803–6810 (2014).

    CAS  Google Scholar 

  9. S. Yaragalla, A.P. Meera, N. Kalarikkal, and S. Thomas, Industrial Crops and Products 74,792–802 (2015).

    CAS  Google Scholar 

  10. T. Huang, Y. Xin, T. Li, S. Nutt, C. Su, H. Chen, P. Liu, and Z. Lai, ACS Applied Materials & Interfaces 5 (11), 4878–4891 (2013).

    CAS  Google Scholar 

  11. W. Brostow, H.E.H. Lobland, N. Hnatchuk, and J.M. Perez, Nanomaterials 7 (3), 66 (2017).

    Google Scholar 

  12. R. Shah, T. Datashvili, T. Cai, J. Wahrmund, B. Menard, K.P. Menard, W. Brostow and J.M. Perez, Materials Research Innovations 19 (2), 97–106 (2015).

    CAS  Google Scholar 

  13. W. Brostow, S. Deshpande, T. Hilbig & R. Simoes, Polymer Bulletin 70 (4), 1457–1464 (2013).

    CAS  Google Scholar 

  14. J.R. Rocha, K.Z. Yang, T. Hilbig, W. Brostow & R. Simoes, Journal of Materials Research 28 (21), 3043–3052 (2013)

    CAS  Google Scholar 

  15. S. Sharma, R. Chandra, P. Kumar, and N. Kumar, Acta Mechanica Solida Sinica 28, 409–419 (2015).

    Google Scholar 

  16. Q. Lin, L. Qu, Q. Lü, and C. Fang, Polymer Testing 32 (2), 330–337 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, R. Mechanical and Tribological Properties of Graphene Reinforced Natural Rubber Composites: A Molecular Dynamics Study. MRS Advances 3, 525–530 (2018). https://doi.org/10.1557/adv.2018.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.178

Navigation