Skip to main content

Advertisement

Log in

Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Development of high-efficiency solar cell modules and new application fields are significant for the further development of photovoltaics (PV) and creation of new clean energy infrastructure based on PV. Especially, development of PV-powered EV applications is desirable and very important for this end. This paper shows analytical results for efficiency potential of various solar cells for choosing candidates of high-efficiency solar cell modules for automobile applications. As a result of analysis, Si tandem solar cells are thought to be some of their candidates. This paper also overviews efficiency potential and recent activities of various Si tandem solar cells such as III-V/Si, II-VI/Si, chalcopyrite/Si, perovskite/Si and nanowire/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of high efficiency with efficiencies of more than 36% for 2-junction and 42 % for 3-junction tandem solar cells under 1-sun AM1.5 G, lightweight and low-cost potential. Recent results for our 28.2 % efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si 3-junction solar cell are also presented. Approaches to automobile application by using III-V/Si tandem solar cells and static low concentration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WBGU (German Advisory Council on Global Change), “The World in Transition - Towards Sustainable Energy Systems”. ISBN 1-85383-882-9, (Earthsan, London, 2003) http://www.wbgu.de/

    Google Scholar 

  2. Shell, “Sky Scenario data 2018”, www.shell.com/skyscenario.

  3. DOE Program Record Office of Bioenergy Technologies, Fuel Cell Technologies, and Vehicle Technologies, 10 May 2013.

    Google Scholar 

  4. Japanese Ministry of Land, Infrastructure, Transport and Tourism, “Road Traffic Census” (in Japanese) (2015), http://www.mlit.go.jp/road/ir/ir-data/ir-data.html.

    Google Scholar 

  5. Agency for Natural Resources and Energy (Japanese Ministry of Economy, Trade, and Industry), “ Outline of the 2014 Annual Report on Energy” (Energy White Paper), 141 (2014).

    Google Scholar 

  6. T. Masuda, K. Araki, K. Okumura, S. Urabe, Y. Kudo, K. Kimura, T. Nakado, A. Sato and M. Yamaguchi, Solar Energy 46, 523 (2017).

    Article  Google Scholar 

  7. A. Goetzberger, J. Luther and G. Willek, Solar Energy Mater. Solar Cells 74, 1 (2002).

    Article  CAS  Google Scholar 

  8. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  9. M. Yamaguchi, H. Yamada, Y. Katsumata, K-H. Lee, K. Araki and N. Kojima, J. Mater. Res. 32, 3445 (2017).

    Article  CAS  Google Scholar 

  10. M. Yamaguchi, K.H. Lee, K. Araki, N. Kojima, H. Yamada and Y. Katsumata, Prog. Photovoltaics 26, 543 (2018).

    Article  CAS  Google Scholar 

  11. M.A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovoltaics 18, 346 (2010).

    Article  Google Scholar 

  12. M.A. Green, K. Emery, Y. Hishikawa, W. Warta and E.D. Dunlop, Prog. Photovoltaics 24, 905 (2016).

    Article  Google Scholar 

  13. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi and A.W.Y. Ho-Baillie, Prog. Photovoltaics 25, 668 (2017).

    Article  Google Scholar 

  14. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita and A.W.Y. Ho-Baillie, Prog. Photovoltaics 27, 565 (2019).

    Article  Google Scholar 

  15. U. Rau, Phys. Rev. B76, 085303 (2007).

    Article  Google Scholar 

  16. M.A. Green, Prog. Photovoltaics 20, 472 (2012).

    Article  CAS  Google Scholar 

  17. J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong, Z. He, H. Wu, J. Troughion, T. Watson, D. Bryant and J. Nelson, Phys. Rev. Applied 4, 014020 (2015).

    Article  Google Scholar 

  18. M.A. Green, Solar Cells. (UNSW, Kensington, 1998).

    Google Scholar 

  19. M. Yamaguchi, K.-H. Lee, K. Araki and N. Kojima, J. Phys. D. Appl. Phys. 51, 133002 (2018).

    Article  Google Scholar 

  20. S. Essig, C. Allebe, T. Remo, J.F. Geisz, M.A. Steiner, K. Horowitz, L. Barrud, J.S. Ward, M. Schnabel, A. Descoeudres, D.L. Young, M. Woodhouse, M. Despeisse, C. Ballif and A. Tamboli, Nat. Energy 2, 17144 (2017).

    Article  CAS  Google Scholar 

  21. M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland and S. Sivananthan, Appl. Phys. Lett. 96, 153502 (2010).

    Article  Google Scholar 

  22. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P. D. Dapkus and C. Zhou, Nano Lett. 15, 7217 (2015).

    Article  CAS  Google Scholar 

  23. K. Sasaki, T. Agui, K. Naaido, N. Takahasi, R. Onitsuka and T. Takamoto, presented at the 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan (2013).

    Google Scholar 

  24. M. Yamaguchi, K. Araki, K.H. Lee, D. Sato, N. Kojima, K. Nakamura, Y. Ohshita, Ta. Masuda, A. Satou, K. Yamada, T. Takamoto, T. Sato, M. Yamazaki and H. Yamada, presented at the 29thNREL Si Workshop, Winte Park USA, Aug. 4-7, 2019.

    Google Scholar 

  25. M. Yamaguchi, T. Warabisako and H. Sugiura, J. Cryst. Growth 136, 29 (1994).

    Article  CAS  Google Scholar 

  26. M. Yamaguchi, K-H. Lee, K. Araki, K. Nakamura, N. Kojima, and Y. Ohshita, presented at the 20 International Conference on Ternary and Mulitinar Compounds, Halle Germany, September 5th - 9th (2016).

    Google Scholar 

  27. N. Shigekawa, J. Liang, R. Onitsuka, T. Agui, H. Juso and T. Takamoto, Jpn. J. Appl. Phys. 54, 08KE03 (2015).

    Article  Google Scholar 

  28. T. Takamoto, H. Washio, H. Yamaguchi, R. Ijichi, Y. Suzuki, K. Shimada, N. Takahashi and S. Ooka, presented at the 44 IEEE Photovoltaic Specialist Conference, Washington DC USA, June 25th - 30th (2017).

    Google Scholar 

  29. K. Makita, H. Mizuno, T. Tayagaki, T. Aihara, R. Oshima, Y. Shoji, H. Takato, R. Muller, P. Beutel, D. Lackner, J. Benick, M. Hermle, F. Dimroth and T. Sugaya, presented at the 36th European Photovoltaic Solar Energy Conference, Marseille France, Sep. 9-13 2019.

    Google Scholar 

  30. K. Araki, K. Nakamura, K-H. Lee, T. Kamioka, Y.-C. Wang, N. Kojima, Y. Ohshita, and M. Yamaguchi, presented at the 44th IEEE Photovoltaic Specialists Conference, Washington DC USA, June 25th - 30th (2017).

    Google Scholar 

  31. T. Masuda, K. Araki, K. Okumura, S. Urabe, Y. Kudo, K. Kimura, T. Nakad, A. Sato, K.-H. Lee, and M. Yamaguci, presented at the 33rd European Photovoltaic Solar Energy Conference, Amsterdam, Sep. 25 - 29 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M., Lee, KH., Sato, D. et al. Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications. MRS Advances 5, 441–450 (2020). https://doi.org/10.1557/adv.2020.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.66

Navigation