Skip to main content
Log in

Mechanisms of the electron irradiation-induced amorphous transition in intermetallic compounds

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A buildup of radiation-induced lattice defects is proposed as the cause for lattice instability that can give rise to a crystalline-to-amorphous transition. An analysis of published experiments on intermetallic compounds suggests that, when amorphization takes place, no microstructural evolution based on the aggregation of like-point defects occurs. This observation leads us to suggest that buildup of a different type of defect, which will destabilize the crystal, should occur. We thus propose that an interstitial and a vacancy may form a complex, giving rise to a relaxed configuration exhibiting a sort of short-range order. Two mechanisms of complex formation are analyzed, one diffusionless (limited by the point defect production rate) and the other temperature dependent. The amorphization kinetics as a function of temperature, dose, and point defect sink strength are studied. Theoretical predictions on the amorphization dose as a function of temperature are made for the equiatomic TiNi alloy and compared with available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pietrokowski, Rev. Sci. Instrum. 34, 455 (1963).

    Google Scholar 

  2. D. R. Harbur, J. W. Anderson, and W. G. Maraman, Trans. TMS–AIME 245, 1055 (1969).

    CAS  Google Scholar 

  3. G. Thomas, H. Mori, H. Fujita, and R. Sinclair, Scr. Metal. 16, 589 (1982).

    CAS  Google Scholar 

  4. H. Mori and H. Fujita, Jpn. J. Appl. Phys. 21, L494 (1982).

    Article  CAS  Google Scholar 

  5. H. Mori, H. Fujita, and M. Fujita, Jpn. J. Appl. Phys. 22, L94 (1983).

    Google Scholar 

  6. A. R. Pelton, Proceedings of the Seventh International Conference on High Voltage Electron Microscopy, LBL-16031, UC-25, CONF-830819 (Lawrence Berkeley Laboratory, Berkeley, CA, 1983), p. 245.

    Google Scholar 

  7. H. Mori, H. Fujita, M. Tendo, and M. Fujita, Scr. Metal. 18, 783 (1984).

    CAS  Google Scholar 

  8. D. E. Luzzi, H. Mori, and H. Fujita, Scr. Metal. 18, 957 (1984).

    CAS  Google Scholar 

  9. G. J. C. Carpenter and E. M. Schulson, J. Nucl. Mater. 23, 180 (1978).

    Google Scholar 

  10. L. M. Howe and M. H. Rainville, J. Nucl. Mater. 68, 215 (1977).

    Article  CAS  Google Scholar 

  11. L. M. Howe and M. H. Rainville, Radiat. Eff. 48, 151 (1980).

    Article  CAS  Google Scholar 

  12. M. D. Rechtin, J. Vander Sande, and P. M. Baldo, Scr. Metal. 12, 639 (1977).

    Article  Google Scholar 

  13. R. O. Elliot, D. A. Koss, and C. B. Giessen, Scr. Metal. 14, 1061 (1980).

    Article  Google Scholar 

  14. J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Metastable Materials Formation by Ion Implantation, edited by S. T. Picraux and W. J. Choyke (North-Holland, New York, 1982), p. 235.

    Google Scholar 

  15. J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Radiat. Eff. 77, 273 (1983).

    Article  CAS  Google Scholar 

  16. J. L. Brimhall, H. E. Kissinger, and A. R. Pelton, Ion Implantation and Ion Beam Processing of Materials, edited by G. K. Hubler, O. W. Holland, C. R. Clayton, and C. W. White (North-Holland, New York, 1984), p. 163.

    Google Scholar 

  17. P. Moine, J. P. Riviere, N. Junqua, and J. Delafond, in Ref. 12, p. 243.

  18. P. Moine, J. P. Eymery, R. J. Gaboriaud, and J. Delafond, Nucl. Instrum. Methods 209/210, 267 (1983).

    Article  Google Scholar 

  19. P. Moine, J. P. Riviere, M. O. Rouault, J. Chaumont, A. Pelton, and R. Sinclair, Nucl. Instrum. Methods B 7/8, 20 (1985).

    Article  Google Scholar 

  20. O. T. Woo, J. Nucl. Mater. 125, 120 (1984).

    CAS  Google Scholar 

  21. J. L. Brimhall, L. A. Chariot, and R. Wang, Scr. Metal. 13, 217 (1979).

    CAS  Google Scholar 

  22. W. A. Grant, J. Vac. Sci. Technol. 15, 1644 (1978).

    CAS  Google Scholar 

  23. H. J. Wollenberger, Physical Metallurgy, edited by R. W. Cahn and P. Haasen (Elsevier, New York, 1983), 3rd ed., Chap. 17, p. 1140.

    Google Scholar 

  24. M. Halbwachs and J. Hillairet, Phys. Rev. B 18, 4927 (1978).

    CAS  Google Scholar 

  25. M. Halbwachs, J. T. Stanley, and J. Hillairet, Phys. Rev. B 18, 4938 (1978).

    CAS  Google Scholar 

  26. C. Dimitrov, M. Da Cunha Belo, and O. Dimitrqv, in the Proceedings of the Yamada Conference, edited by J. I. Takamura, M. Doyama, and M. Kiritani (University of Tokyo, Tokyo, 1982), p. 660.

    Google Scholar 

  27. J. P. Rivière, M. O. Rouault, M. Schack, and J. Chaumont, Radiat. Eff. 79, 275 (1983).

    CAS  Google Scholar 

  28. M. L. Swanson, J. R. Parson, and C. W. Hoelke, Radiat. Eff. 9, 249 (1971).

    CAS  Google Scholar 

  29. I. Ansara, A. Pasturel, and K. H. J. Buschow, Phys. Status Solidi (A) 69, 447 (1982).

    CAS  Google Scholar 

  30. M. R. Henaff, C. Colinet, A. Pasturel, and K. H. J. Buschow, J. Appl. Phys. 56, 307 (1984).

    Article  CAS  Google Scholar 

  31. A. F. Marshall, Y. S. Lee, and D. A. Stevenson, Acta Metall. 31, 1225 (1984).

    Article  Google Scholar 

  32. J. F. Sadoc and C. N. J. Wagner, Glossy Metals II, Topics in Applied Physics, edited by H. Beck and H. J. Guntherodt (Springer, Berlin, 1983), Vol. 53, p. 51.

    Google Scholar 

  33. D. Fainstein Pedraza, E. J. Savino, and A. J. Pedraza, J. Nucl. Mater. 73, 151 (1978).

    Article  Google Scholar 

  34. L. K. Mansur, Nucl. Technol. 40, 5 (1978).

    Article  CAS  Google Scholar 

  35. T. Mukoi, C. Kinoshita, and S. Kitajuina, Philos. Mag. A 47, 255 (1983).

    Article  Google Scholar 

  36. Y. Adda and J. Phillibert, La Diffusion dans les Solides (Presses Universitaires de France, Paris, 1966), Tome I.

    Google Scholar 

  37. D. F. Pedraza and L. K. Mansur, “The Effect of Point Defects on the Amorphization of Metallic Alloys During Ion Implantation,” in the Proceedings of the Symposium on Irradiation Effects Associated with Ion Implantation, Toronto, Ontario, Canada, October 1985 (to be published).

  38. D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Scr. Metal. 19, 897 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, D.F. Mechanisms of the electron irradiation-induced amorphous transition in intermetallic compounds. Journal of Materials Research 1, 425–441 (1986). https://doi.org/10.1557/JMR.1986.0425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0425

Navigation