Skip to main content
Log in

Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni3Al

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have used “local volume” (embedded atom) type potentials to study the surfaces and grain boundaries of Ni, Al, and Ni3Al. The simulations show that with appropriately fit potentials, the surface and grain boundary structure can be realistically calculated. The surface rippling and relaxation show good agreement with experiments. The energies of most surfaces and grain boundaries also agree with existing data. The structural unit model for grain boundaries in Ni3Al shows the same generic units as in pure metals, but with large variations due to distortions and multiplicity. The utility of the structural unit model is thus more limited for alloys. The grain boundary energies were found to be the highest for Al-rich Ni3Al grain boundaries, and depend significantly on the local composition of the grain boundary. The cusps in the grain boundary energy as a function of misorientation angle are different for different grain boundary stoichiometries. The Ni3Al grain boundaries have approximately the same grain boundary energy and cohesive energy as that of Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Nature and Behavior of Grain Boundaries, edited by H. Hu (Plenum Press, New York, 1972).

  2. Grain Boundary Structure and Properties, edited by G. A. Chadwick and D. A. Smith (Academic Press, New York, 1976).

  3. Grain Boundary Structure and Kinetics, edited by R. W. Balluffi (ASM, Metals Park, OH, 1980).

  4. W. T. Reed and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  Google Scholar 

  5. M. L. Kronberg and F. H. Wilson, Trans. AIME 185, 501 (1949).

    Google Scholar 

  6. F. C. Frank, Conf. Plastic Def. of Cryst. Solids (Mellon Inst., Pittsburgh, PA, 1950).

    Google Scholar 

  7. D. G. Brandon, B. Ralph, S. Ranganathan, and M. S. Wald, Acta Metall. 12, 813 (1964).

    Article  Google Scholar 

  8. S. Ranganathan, Acta Cryst. 21, 197 (1966).

    Article  CAS  Google Scholar 

  9. W. Bollmann, Phil. Mag. 16, 363 (1967).

    Article  CAS  Google Scholar 

  10. G. H. Bishop and B. Chalmers, Scripta Metall. 2, 133 (1968).

    Article  Google Scholar 

  11. M. F. Ashby, F. Spaepen, and S. Williams, Acta Metall. 26, 1647 (1978).

    Article  CAS  Google Scholar 

  12. A. P. Sutton and V. Vitek, Phil. Trans. Roy. Soc. (London) A309, 1, 37, 55 (1983).

    Google Scholar 

  13. G. J. Wang and V. Vitek, Acta Metall. 34, 951 (1986).

    Article  CAS  Google Scholar 

  14. W. Krakow, J. T. Wetzel, and D. A. Smith, Phil. Mag. A53, 739 (1986).

    Article  Google Scholar 

  15. Y. Oh and V. Vitek, Acta Metall. 34, 1941 (1986).

    Article  Google Scholar 

  16. J. Budai, P. D. Bristowe, and S. L. Sass, Acta Metall. 31, 699 (1983).

    Article  CAS  Google Scholar 

  17. A. F. Voter and S. P. Chen, Mat. Res. Soc. Symp. Proc. 82, 175 (1987).

    Article  CAS  Google Scholar 

  18. S. P. Chen, A. F. Voter, and D. J. Srolovitz, Phys. Rev. Lett. 57, 1308 (1986).

    Article  CAS  Google Scholar 

  19. S. P. Chen, A. F. Voter, and D. J. Srolovitz, Scripta Metall. 20, 1389 (1986).

    Article  CAS  Google Scholar 

  20. S. P. Chen, A. F. Voter, and D. J. Srolovitz, Mat. Res. Soc. Symp. Proc. 82, 515 (1987).

    Article  CAS  Google Scholar 

  21. S. P. Chen, A. F. Voter, and D. J. Srolovitz, Mat. Res. Soc. Symp. Proc. 81, 45 (1987).

    Article  CAS  Google Scholar 

  22. K. Aoki and O. Izumi, Trans. JIM 19, 203 (1978); C. T. Liu, C. L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).

    Article  CAS  Google Scholar 

  23. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B. 29, 6443 (1984).

    Article  CAS  Google Scholar 

  24. A. F. Voter (to be published).

  25. J. K. Norskov and N. D. Lang, Phys. Rev. B 21, 2131 (1980); M. J. Stott and E. Zaremba, Phys. Rev. B 22, 1564 (1980).

    Article  Google Scholar 

  26. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  27. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976).

    Google Scholar 

  29. Metal Reference Book, 5th ed., edited by C. J. Smith (Butterworth’s, London, 1976).

  30. Handbook of Chemistry and Physics, edited by R. C. Weast (CRC, Boca Raton, FL, 1984).

  31. G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977).

    Google Scholar 

  32. R. W. Balluffi, J. Nucl. Materials 69, 240 (1978).

    Article  Google Scholar 

  33. J. S. Koehler, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schumacher, W. Shilling, and J. Diehl (North Holland, Amsterdam, 1970), p. 175.

    Google Scholar 

  34. J. O. Noell, M. D. Newton, P. J. Hay, R. L. Martin, and F. W. Bobrowicz, J. Chem. Phys. 73, 2360 (1980).

    Article  CAS  Google Scholar 

  35. K. P. Huber and G. Hertzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  36. S. Stassis, Phys. Stat. Soli. A 64, 335 (1981).

    Article  Google Scholar 

  37. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).

    Google Scholar 

  38. M. H. Yoo, private communication; values from Ref. 33 were scaled to T = 0 K according to values in K. Ono and R. Stern, Trans. AIME 245, 171 (1969).

    Google Scholar 

  39. T.-M. Wang, M. Shimotomai, and M. Doyama, J. Phys. F 14, 37 (1984).

  40. P. Veyssiere, J. Douin, and P. Beauchamp, Phil. Mag. A 51, 469 (1985).

    Article  CAS  Google Scholar 

  41. R. C. Pond and V. Vitek, Proc. Roy. Soc. (London) A 357, 453 (1977).

    CAS  Google Scholar 

  42. G. J. Wang, A. P. Sutton, and V. Vitek, Acta Metall. 32, 1093 (1984).

    Article  CAS  Google Scholar 

  43. The Structure of Surfaces, edited by M. A. von Hove and S. Y. Tong, Springer Series in Surface Sciences (Springer, Berlin, 1985), Vol. 2.

  44. H. B. Nielsen, J. N. Anderson, L. Petersen, and D. L. Adams, J. Phys. C 14, L1113 (1982), and J. Phys. C 17, 173 (1985).

    Article  Google Scholar 

  45. J. R. Noonan and H. L. Davis, Phys. Rev. B 29, 4349 (1984).

    Article  CAS  Google Scholar 

  46. D. L. Adams, L. E. Petersen, and C. S. Sorensen, J. Phys. C 18, 1753 (1985).

    Article  CAS  Google Scholar 

  47. S. M. Yalisove, W. R. Graham, E. D. Adams, M. Copel, and T. Gustafsson, Surf. Sci. 171, 400 (1986).

    Article  CAS  Google Scholar 

  48. D. Sondericker, F. Jona, and P. M. Marcus, Phys. Rev. B 33, 900 (1986), and Bull. Am. Phys. Soc. 31, 325 (1986).

    Article  CAS  Google Scholar 

  49. I. K. Robinson, Phys. Rev. Lett. 50, 1145 (1983).

    Article  CAS  Google Scholar 

  50. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968), p. 670.

    Google Scholar 

  51. R. C Pond and V. Vitek, Proc. Roy. Soc. (London), A 357, 453 (1977).

    CAS  Google Scholar 

  52. D. A. Smith, V. Vitek, and R. C. Pond, Acta Metall. 25, 475 (1977).

    Article  CAS  Google Scholar 

  53. W. Rosenhain and J. C. W. Humphrey, J. Iron Steel Inst. 87, 219 (1913).

    Google Scholar 

  54. Y. Oh and V. Vitek, Acta Metall. 34, 1941 (1986).

    Article  Google Scholar 

  55. G. C. Hasson and C. Goux, Scripta Metall. 5, 889 (1971).

    Article  CAS  Google Scholar 

  56. N. A. Gjostein and F. N. Rhines, Acta Metall. 7, 319 (1959).

    Article  CAS  Google Scholar 

  57. L. E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).

    Google Scholar 

  58. A. A. Griffith, Phil. Trans. Roy. Soc. A 221, 163 (1920).

    Google Scholar 

  59. C. J. McMahon and V. Vitek, Acta Metall. 27, 507 (1979).

    Article  CAS  Google Scholar 

  60. J. E. Hack, S. P. Chen, and D. J. Srolovitz, Acta Metall. (to be published); J. E. Hack, D. J. Srolovitz, and S. P. Chen, Scripta Metall. 20, 1699 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.P., Srolovitz, D.J. & Voter, A.F. Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni3Al. Journal of Materials Research 4, 62–77 (1989). https://doi.org/10.1557/JMR.1989.0062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0062

Navigation