Skip to main content
Log in

Molecular dynamics simulation of displacement cascades in Cu and Ni: Thermal spike behavior

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of energetic displacement cascades in Cu and Ni were performed with primary-knock-on-atom (PKA) energies up to 5 keV. The interatomic forces were represented by the Gibson II (Cu) and the Johnson-Erginsoy (Ni) potentials. Our results indicate that the primary state of damage produced by displacement cascades is controlled basically by two phenomena: replacement collision sequences during the ballistic phase, and melting and resolidification during the thermal spike. The thermal-spike phase is of longer duration and has a more marked effect in Cu than in Ni. Results for atomic mixing, defect production, and defect clustering are presented and compared with experiment. Simulations of “heat spikes” in these metals suggest a model for “cascade collapse” based on the regrowth kinetics of the molten cascade core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g., V. M. Agranovich and V. V. Kirsanov, in Physics of Radiation Effects in Crystals, edited by R. A. Johnson and A. N. Orlov (Elsevier, New York, 1986), p. 117.

    Chapter  Google Scholar 

  2. Proceedings of Workshop on Fusion Materials, Lugano, Switzerland, May 1988 (published in Radiation Effects, in press).

  3. See, e.g., Mat. Res. Soc. Symposia Proceedings 51 (1986), 74 (1987).

  4. J. R. Beeler, Jr., Phys. Rev. 150, 470 (1966).

    Article  CAS  Google Scholar 

  5. M. T. Robinson and I. M. Torrens, Phys. Rev. B 9, 5008 (1974).

    Article  Google Scholar 

  6. G. H. Vineyard, Rad. Effects 29, 245 (1976).

    Article  CAS  Google Scholar 

  7. J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).

    Article  CAS  Google Scholar 

  8. W. E. King and R. Benedek, J. Nucl. Mater. 117, 26 (1983); Phys. Rev. B 23, 6335 (1981).

    Article  CAS  Google Scholar 

  9. R. A. Johnson, Phys. Rev. 145, 423 (1966); C. Erginsoy, G. H. Vineyard, and A. Englert, Phys. Rev. 133, A595 (1964). See also the comments on this potential by J. R. Beeler, Jr., in Radiation Effects Computer Experiments (North-Holland, New York, 1982), p. 129.

    Article  CAS  Google Scholar 

  10. P. H. Dederichs, C. Lehmann, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69/70, 176 (1978).

    Article  Google Scholar 

  11. Melting temperatures were estimated from simulations with Rahman-Parrinello boundary conditions and external pressures of 62.9 kbar and 202.4 kbar, for the Johnson-Erginsoy and Gibson II potentials, respectively, which reproduce the appropriate room-temperature lattice constants. A cell with 576 atoms is first equilibrated at a given temperature and then “seeded” either with a vacancy cluster (up to 19 vacancies) or with several vacancies in a local region; the structure factor is monitored to determine whether melting occurs. We note, however, that this procedure provides only an upper bound on the melting temperature if superheating occurs (J. F. Lutsko, S. R. Phillpot, and D. Wolf, personal communication). The cluster sizes employed are probably large enough to nucleate effectively a melt and minimize superheating effects.

  12. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  Google Scholar 

  13. M. S. Daw and M. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  14. The pair distribution function g(r) is calculated for a spherical region of radius Rgi(t), the radius of gyration of the distribution of “interstitial” atoms at time t. A more precise definition of the disordered region could be devised, but the qualitative features of g(r) would be unchanged.

  15. S. Foiles, Phys. Rev. B 32, 3409 (1985).

    Article  Google Scholar 

  16. The center of the cascade is defined here as the centroid of the vacancy distribution at an early time in its development (t = 0.1 ps).

  17. The experimental values of Tm were used.

  18. S.-J. Kim, M-A. Nicolet, R. S. Averback, and D. Peak, Phys. Rev. B 37, 38 (1988).

    Article  Google Scholar 

  19. R. S. Averback, R. Benedek, and K. L. Merkle, Phys. Rev. B 18, 4156 (1978).

    Article  Google Scholar 

  20. P. Jung, J. Nucl. Mater. 117, 70 (1983).

    Article  CAS  Google Scholar 

  21. K. L. Merkle, in Radiation Damage in Metals, edited by N. L. Peterson and S. D. Harkness (American Society for Metals, Metals Park, OH, 1976), p. 58.

    Google Scholar 

  22. M. W. Guinan and J. H. Kinney, J. Nucl. Mater. 103/104, 1319 (1981).

    Article  Google Scholar 

  23. C. Y. Wei, M. I. Current, and D. N. Seidman, Philos. Mag. 44, 459 (1981).

    Article  CAS  Google Scholar 

  24. D. Pramanik and D. N. Seidman, Nucl. Instr. and Meth. 209/210, 453 (1983).

    Article  Google Scholar 

  25. D. Grasse, B. v. Guerard, and J. Peisl, J. Nucl. Mater. 120, 304 (1984).

    Article  CAS  Google Scholar 

  26. C. A. English and M. L. Jenkins, Mats. Science Forum 15–18, 1003 (1987).

    Article  CAS  Google Scholar 

  27. M. A. Kirk, I. M. Robertson, M. L. Jenkins, C. A. English, T. J. Black, and J. S. Vetrano, J. Nucl. Mater. 149, 21 (1987).

    Article  CAS  Google Scholar 

  28. V. I. Protasov and V. G. Chudinov, Rad. Eff. 66, 1 (1982).

    Article  CAS  Google Scholar 

  29. V. G. Kapinos and P. A. Platonov, Rad. Eff. 103, 45 (1987).

    Article  Google Scholar 

  30. P. M. Richards, Phys. Rev. B 38, 2727 (1988).

    Article  Google Scholar 

  31. E. Burke, J. R. Broughton, and G. H. Gilmer, J. Chem. Phys. 89, 1030 (1988).

    Article  CAS  Google Scholar 

  32. K. Smalinskas, I. M. Robertson, and R. S. Averback (unpublished) and K. Smalinskas, Master’s Thesis, University of Illinois at Urbana, 1988.

  33. C. P. Flynn and R. S. Averback, Phys. Rev. B 38, 7118 (1988); see also Z. Sroubek, Appl. Phys. Lett. 45, 849 (1984).

    Article  Google Scholar 

  34. J. Lindhard, M. Scharff, and H. E. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 14, 1963.

  35. T. E. Faber, in Physics of Metals I., Electrons, edited by J. M. Ziman (Cambridge University Press, Cambridge, 1969), p. 284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Rubia, T.D., Averback, R.S., Hsieh, H. et al. Molecular dynamics simulation of displacement cascades in Cu and Ni: Thermal spike behavior. Journal of Materials Research 4, 579–586 (1989). https://doi.org/10.1557/JMR.1989.0579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0579

Navigation