Skip to main content
Log in

Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Specimens of pure Fe and of Fe-0.8 mass % C, Fe-0.5 mass % Cr, Fe-4.0 mass % Cr, Fe-4.0 mass% Ni, and Fe-10.0 mass% Ni alloys were borided in boriding powder. A boron-compound layer developed consisting of a surface-adjacent “FeB” sublayer on top of an “Fe2B” sublayer. Layer-growth kinetics were analyzed by measuring the extent of penetration of the “FeB” and “Fe2B” sublayers as a function of boriding time and temperature in the range 1025–1275 K. Layer growth is dominated by B diffusion through “FeB/Fe2B”. This diffusion process is of strongly anisotropic nature. Consequently, ragged interfaces occur between the substrate and the boride layers. The depths of the tips of the most deeply penetrated “FeB” and “Fe2B” needles have been taken as measures for diffusion in the easy [001] diffusion directions. Assuming unidirectional B diffusion and parabolic growth, a simple model of layer growth has been given. It accounts for the specific volume difference between “FeB” and “Fe2B”. In contrast with earlier work, the model provides values for the kinetic parameters for growth of each of the phases in the boron-compound layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Graf von Matuschka, Boronising (Carl Hanser Verlag, Munich, FRG, 1980).

    Google Scholar 

  2. P. A. Dearnley and T. Bell, Surf. Eng. 1, 203–217 (1985).

    Article  CAS  Google Scholar 

  3. H. Kunst and O. Schaaber, Härterei-Tech. Mitt. 22, 1–25 (1967).

    CAS  Google Scholar 

  4. M-J. Lu, Härterei-Tech. Mitt. 38, 156–169 (1983).

    CAS  Google Scholar 

  5. O. Kubaschewski, Iron-Binary Phase Diagrams (Springer Verlag, Berlin, FRG, 1982).

    Google Scholar 

  6. Binary Phase Diagrams, edited by T. B. Massalski et al. (ASM, Metals Park, OH, 1986), Vol. 1, p. 356.

  7. T. Bjurström and H. Arnfelt, Z. Phys. Chem. (B) 4, 469–474 (1929).

    CAS  Google Scholar 

  8. B. Hendricks and P. R. Kosting, Z. Kristallog. 74, 511–545 (1930).

    CAS  Google Scholar 

  9. T. Bjurström, Ark. Kemi, Mineralogi och Geologi 11A, no. 5, 1–12 (1933).

    Google Scholar 

  10. R. Kiessling, Acta Chem. Scand. 4, 209–227 (1950).

    Article  CAS  Google Scholar 

  11. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals (Pergamon Press, Oxford, 1967), Vol. 1, p. 899.

    Google Scholar 

  12. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals (Pergamon Press, Oxford, 1985), Vol. 2, p. 1297.

    Google Scholar 

  13. E. E. Havinga, H. Damsma, and P. Hokkeling, J. Less-Common Metals 27, 169–193 (1972).

    Article  CAS  Google Scholar 

  14. B. Aronsson, T. Lundström, and I. Engström, Proc. Int. Symp. on Anisotropy in Single-Crystal Refractory Compounds, edited by F. W. Vahldiek and S.A. Mersol, 1967 (Plenum Press, New York, 1968), Vol. 1, pp. 3–22.

    Chapter  Google Scholar 

  15. International Tables for X-ray Crystallography (The Kynoch Press, Birmingham, 1962), Vol. 3, p. 42.

  16. M. Chochołowski, K. Przybyłowicz, J. Szymański, and J. Żelechowski, Metalurgia i Odlewnictwo 9, 411–421 (1983).

    Google Scholar 

  17. J. J. Smit, M.Sc. Thesis, Delft University of Technology, Laboratory of Metallurgy, 1984.

  18. G. Hägg, Z. Phys. Chem. (B) 11, 152–162 (1930).

    CAS  Google Scholar 

  19. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, New York, 1960), p. 435.

    Google Scholar 

  20. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), p. 135.

    Google Scholar 

  21. H. Plänitz, G. Treffer, H. König, and G. Marx, Neue Hütte 27, 228–230 (1982).

    CAS  Google Scholar 

  22. C. Badini, C. Gianoglio, and G. Pradelli, J. Mater. Sci. 21, 1721–1729 (1986).

    Article  CAS  Google Scholar 

  23. Z-S. Jiang, L-X. Zhang, L-G. Li, X-R. Pei, and T-F. Li, J. Heat Treating 2, 337–343 (1982).

    Article  Google Scholar 

  24. J. Fridberg, L-E. Törndahl, and M. Hillert, Jernkont. Ann. 153, 264–276 (1969).

    Google Scholar 

  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986), pp. 269–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brakman, C.M., Gommers, A.W.J. & Mittemeijer, E.J. Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. Journal of Materials Research 4, 1354–1370 (1989). https://doi.org/10.1557/JMR.1989.1354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1354

Navigation