Skip to main content
Log in

Diamond polytypes and their vibrational spectra

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of diamond polytype structures are described and their IR and Raman vibrational modes predicted. The diamond polytypes are analogous to the well-known silicon carbide polytypes. The intermediate 6H diamond polytype was recently identified by single crystal electron diffraction of vapor precipitated diamond powder. In addition, end member polytypes of 3C (cubic diamond) and 2H diamond (hexagonal lonsdaleite) have been previously established, and polytypes such as 4H, 8H, 15R, and 21R diamond are predicted, but may be difficult to isolate and identify. The various diamond polytype structures differ only in the stacking sequences of identical puckered hexagonal carbon layers. These identical carbon layers lie parallel to the cubic 3C {111} and the hexagonal 2H {001} planes. A new method for uniquely labeling the structural layers in the polytype stacking sequences is presented. Factor group analysis was used to determine the IR and Raman selection rules for five diamond polytypes with structures intermediate between those of end members diamond and lonsdaleite. Brillouin zone folding techniques were used to determine band positions, in analogy with analyses of SiC polytypes discussed in the literature. The results predict that (i) all diamond polytypes are Raman active, (ii) limiting polytypes 3C and 2H are not IR active, and (iii) polytypes 4H, 6H, 8H, 15R, and 21R have IR active modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Spear, J. Am. Ceram. Soc. 72 (2), 171 (1989).

    Article  CAS  Google Scholar 

  2. B. Heimann, J. Kleiman, and N. M. Salansky, Carbon 22 (2), 147 (1984).

    Article  CAS  Google Scholar 

  3. R.W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience Publishers, 1963), Vol. 1, p. 26.

    Google Scholar 

  4. M. Frenklach, R. Kematick, D. Huang, W. Howard, K. E. Spear, A.W. Phelps, and R. Koba, J. Appl. Phys. 66, 395 (1989).

    Article  CAS  Google Scholar 

  5. W. Howard, D. Huang, J. Yuan, M. Frenklach, K.E. Spear, R. Koba, and A.W. Phelps, J. Appl. Phys. 68, 1247 (1990).

    Article  CAS  Google Scholar 

  6. C. E. Holcombe, Calculated X-Ray Diffraction Data for Polymorphic Forms of Carbon, Rpt. Y-1887, Oak Ridge Y-12 Plant, July 23, 1973.

  7. A.W. Phelps, W. Howard, W. B. White, K. E. Spear, and D. Huang, in Diamond, Boron Nitride, Silicon Carbide, and Related Wide Bandgap Semiconductors, edited by J.T. Glass, R. F. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1989).

    Google Scholar 

  8. A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).

    Google Scholar 

  9. P.T. B. Shaffer, Acta Cryst. B25, 477 (1969).

    Article  Google Scholar 

  10. D. Pandey and P. Krishna, Current Topics in Materials Science, edited by E. Kaldis (North Holland, Amsterdam, 1982), Vol. 9, Chap. 2, pp. 415–491.

  11. J. A. Powell, in Novel Refractory Semiconductors, edited by D. Emin, T. L. Aselage, and C. Wood (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987).

    Google Scholar 

  12. S. Ergun and L. E. Alexander, Nature 195, 765 (1962).

    Article  CAS  Google Scholar 

  13. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).

    Article  CAS  Google Scholar 

  14. R. E. Hanneman, H. M. Strong, and F. P. Bundy, Science 155, 995 (1967).

    Article  CAS  Google Scholar 

  15. C. Frondel and U. B. Marvin, Nature 214, 587 (1967).

    Article  CAS  Google Scholar 

  16. H. Hartmann, R. Mach, and B. Selle, Current Topics in Materials Science, edited by E. Kaldis (North Holland, Amsterdam, 1982), Vol. 9, Chap. 1, pp. 1–414.

  17. A.W Phelps, W. M. Howard, and D. K. Smith (unpublished research, Penn State, June 1990).

  18. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  19. D.W. Feldman, J. H. Parker, Jr., W. J. Choyke, and L. Patrick, Phys. Rev. 170, 698 (1968a).

    Article  CAS  Google Scholar 

  20. D.W Feldman, J.H. Parker, Jr., W.J. Choyke, and L. Patrick, Phys. Rev. 173, 787 (1968b).

    Article  CAS  Google Scholar 

  21. G. Dolling and R. A. Cowley, Proc. Phys. Soc. 88, 463 (1966).

    Article  CAS  Google Scholar 

  22. J. L. Warren, R. G. Wenzel, and J. L. Yarnell, in Inelastic Scattering of Neutrons (International Atomic Energy Agency, Vienna, 1965), p. 361.

    Google Scholar 

  23. S. A. Solin and R. J. Kobliska, in Amorphous and Liquid Semiconductors, edited by J. Stuke (Taylor and Francis, London, 1974), p. 1251.

    Google Scholar 

  24. B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

    CAS  Google Scholar 

  25. S. Nakashima, H. Katahama, Y. Nakakura, and A. Mitsuishi, Phys. Rev. B 33, 5721 (1986).

    Article  CAS  Google Scholar 

  26. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover Pub., New York, 1980).

    Google Scholar 

  27. J. F. Vetelino and S. S. Mitra, Phys. Rev. 178, 1349 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spear, K.E., Phelps, A.W. & White, W.B. Diamond polytypes and their vibrational spectra. Journal of Materials Research 5, 2277–2285 (1990). https://doi.org/10.1557/JMR.1990.2277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2277

Navigation