Skip to main content
Log in

Thermogravimetric analysis of the oxidation of CVD diamond films

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond films grown by microwave plasma assisted chemical vapor deposition (CVD) were studied by thermogravimetric analysis under an air atmosphere. Oxidation rates were measured between 600 and 750 °C to determine an activation energy of 213 kJ/mol which is similar to that reported for natural diamond. The rate of oxidation increases with increasing surface area and decreases with increasing humidity. The oxidation proceeds by etching pits into the film, creating a highly porous structure. Graphitization was not detected in partially oxidized samples by Raman or Auger electron spectroscopy. A film that was heated to 1170 °C under nitrogen remained IR transmissive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  2. R.C. DeVries, Ann. Rev. Mater. Sci. 17, 161 (1987).

    Article  Google Scholar 

  3. T. Evans and C. Phaal, Proc. Conf. Carbon, 5th, Univ. Park, PA, 1961, 1, 147 (1962).

    CAS  Google Scholar 

  4. C. E. Johnson, W. A. Weimer, and D. C. Harris, Mater. Res. Bull. XXIV, 1127 (1989).

    Article  Google Scholar 

  5. C. E. Johnson and W. A. Weimer, in Extended Abstracts No. 19, Technology Update on Diamond Films, R. P. H. Chang, D. Nelson, and A. Hiraki (Materials Research Society, Pittsburgh, PA, 1989).

    Google Scholar 

  6. C.P. Chang, D.L. Flamm, D. E. Ibbotson, and J. A. Mucha, J. Appl. Phys. 63, 1744 (1988).

    Article  CAS  Google Scholar 

  7. C. E. Johnson and W. A. Weimer, Proc. SPIE 1146, 188 (1989).

    Article  CAS  Google Scholar 

  8. S. A. Solin and A. K. Ramdas, Phys. Rev. B 1, 1687 (1970).

    Article  Google Scholar 

  9. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  10. R.J. Nemanich, J.T. Glass, G. Lucovsky, and R.E. Shroder, J. Vac. Sci. Technol. A 6, 1783 (1988).

    Article  CAS  Google Scholar 

  11. K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, Phys. Rev. B 38, 4067 (1988).

    Article  CAS  Google Scholar 

  12. Similar results have been reported elsewhere. L. S. Piano, S. Yokota, and K.V. Ravi, in Proc. 1st Int. Symp. on Diamond and Diamond-like Films, edited by J. P. Dismukes, A. J. Purdes, B. S. Meyerson, T. D. Moustakas, K. E. Spear, K.V. Ravi, and M. Yoder (Electrochemical Society, Inc., Pennington, NJ, 1989), p. 380.

    Google Scholar 

  13. N. Uchida, T. Kurita, K. Uematsu, and K. Saito, J. Mater. Sci. Lett. 9, 249 (1990).

    Article  CAS  Google Scholar 

  14. P. G. Lurie and J. M. Wilson, Surf. Sci. 65, 476 (1977).

    Article  CAS  Google Scholar 

  15. M. P. Nadler, T. M. Donovan, and A. K. Green, Thin Solid Films 116, 241 (1984), and references therein.

    Article  CAS  Google Scholar 

  16. J. Gonzalez-Hernandez, B. S. Chao, and D. A. Pawlik, J. Vac. Sci. Technol. A 7, 2332 (1989).

    Article  CAS  Google Scholar 

  17. A. Joshi, R. Nimmagadda, and J. Herrington, J. Vac. Sci. Technol. A 8, 2137 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.E., Hasting, M.A.S. & Weimer, W.A. Thermogravimetric analysis of the oxidation of CVD diamond films. Journal of Materials Research 5, 2320–2325 (1990). https://doi.org/10.1557/JMR.1990.2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2320

Navigation