Skip to main content
Log in

Growth of diamond films and characterization by Raman, scanning electron microscopy, and x-ray photoelectron spectroscopy

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have deposited diamond films on Si<111> using hot filament assisted chemical vapor deposition at low pressures ~25 Torr. Diamond films deposited at different relative concentrations of methane (ranging from 0.25% to 2.0%) in methane-hydrogen mixtures have been characterized by Raman spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. With varying methane concentration, Raman spectra show features characteristic of crystalline diamond, diamond-like carbon, and polycrystalline graphite. Scanning electron micrographs show densely packed diamond crystallites. SEM measurements made on diamond films grown as a function of time show that the median grain size of the diamond crystallites increases linearly with time during the initial phase of the growth. X-ray photoelectron spectroscopy reveals differences between the diamond sp3 covalent bonding and sp2 graphitic bonding as well as the extent of s-p hybridization as a function of methane concentration. The plasmon loss shoulder, characteristic of graphite, is absent from the spectrum of 0.25% methane concentration film. But it appears in the XPS spectra of films grown at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus, P. Koidl, and S. Donity, in Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC Press, Boca Raton, FL, 1986), p. 89.

    Google Scholar 

  2. S. Kasi, H. Kang, and J.W. Rabalais, Phys. Rev. Lett. 59, 75 (1987).

    Article  CAS  Google Scholar 

  3. H. Chu and D. B. Bogy, J. Vac. Sci. Technol. A 5, 3287 (1987).

    Article  Google Scholar 

  4. R.C. DeVries, Ann. Rev. Mater. Sci. 17, 161 (1987).

    Article  Google Scholar 

  5. A.R. Badzian and R.C. DeVries, Mater. Res. Bull. XXIII, 385 (1988).

    Article  Google Scholar 

  6. A. R. Badzian, T. Badzían, R. Roy, R. Messier, and K. E. Spear, Mater. Res. Bull. XXIII, 531 (1988).

    Article  Google Scholar 

  7. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  8. K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Ida, and Y. Hirose, Jpn. J. Appl. Phys. 27, L173 (1988).

    Article  CAS  Google Scholar 

  9. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  10. A. Bubenzer, B. Diechler, G. Brandt, and P. Koidl, J. Appl. Phys. 54, 4590 (1983).

    Article  CAS  Google Scholar 

  11. A. Richter, H. J. Scheibe, W. Pompe, K.W. Brzezinka, and I. Muhling, J. Non-Cryst. Solids 88, 131 (1986).

    Article  CAS  Google Scholar 

  12. S. S. Wagal, E.M. Juengerman, and C.B. Collins, Appl. Phys. Lett. 53, 187 (1988).

    Article  CAS  Google Scholar 

  13. S.C. Sharma, R.C. Hyer, C.A. Dark, M. Green, T.D. Black, A. R. Chourasia, and D. R. Chopra, in Extended Abstracts No. 19, Technology Update on Diamond Films, edited by R. P. H. Chang, D. Nelson, and A. Hiraki (Materials Research Society, Pittsburgh, PA, 1989), p. 71.

    Google Scholar 

  14. S.C. Sharma, C.A. Dark, R.C. Hyer, M. Green, T.D. Black, A. R. Chourasia, D. R. Chopra, and K. K. Mishra, Appl. Phys. Lett. 56, 1781 (1990).

    Article  CAS  Google Scholar 

  15. A.R. Chourasia, D.R. Chopra, S.C. Sharma, M. Green, R.C. Hyer, and C.A. Dark, Thin Solid Films (in press).

  16. R.J. Nemanich, J.T. Glass, G. Lucovsky, and R.E. Shroder, J. Vac. Sci. Technol. A 6, 1783 (1988).

    Article  CAS  Google Scholar 

  17. R. E. Shroder, R. J. Nemanich, and J.T. Glass, Phys. Rev. B 41, 3738 (1990).

    Article  CAS  Google Scholar 

  18. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  19. R. G. Buckley, T. D. Moustakas, L. Ye, and J. Varon, J. Appl. Phys. 66, 3595 (1989).

    Article  CAS  Google Scholar 

  20. Y.M. LeGrice, R.J. Nemanich, J.T. Glass, Y.H. Lee, R.A. Rudder, and R. J. Markunas, in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J.T. Glass, R. F. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).

    Google Scholar 

  21. J. Gonzales-Hernandez, G. H. Azarbayajani, R. Tsu, and F. H. Pollak, Appl. Phys. Lett. 47, 1350 (1985).

    Article  Google Scholar 

  22. N. Wada and S. A. Solin, Physica B 105, 353 (1981).

    Article  CAS  Google Scholar 

  23. R. C. Hyer, M. Green, K. K. Mishra, and S. C. Sharma, J. Mater. Sci. Lett. (in press).

  24. S. P. Chauhan, J. C. Angus, and N. C. Gardner, J. Appl. Phys. 47, 4746 (1976).

    Article  CAS  Google Scholar 

  25. F.R. McFeely, S.P. Kowalczyk, L. Ley, R.G. Cavell, R.A. Pollak, and D. A. Shirley, Phys. Rev. B 9, 5268 (1974).

    Article  CAS  Google Scholar 

  26. S.R. Kasi, H. Kang, and J.W. Rabalais, J. Chem. Phys. 88, 5914 (1988).

    Article  CAS  Google Scholar 

  27. Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C.W. Wilmsen, J. Vac. Sci. Technol. A 5, 2809 (1980).

    Article  Google Scholar 

  28. R.G. Cavell, S.P. Kowalczyk, L. Ley, R.A. Pollak, B. Mills, D. A. Shirley, and W. Perry, Phys. Rev. B 7, 5313 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.C., Green, M., Hyer, R.C. et al. Growth of diamond films and characterization by Raman, scanning electron microscopy, and x-ray photoelectron spectroscopy. Journal of Materials Research 5, 2424–2432 (1990). https://doi.org/10.1557/JMR.1990.2424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2424

Navigation