Skip to main content
Log in

Chemical structure and physical properties of diamond-like amorphous carbon films prepared by magnetron sputtering

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin films of amorphous carbon (–C) and amorphous hydrogenated carbon (a–C: H) were prepared using magnetron sputtering of a graphite target. The chemical structures of the films were characterized using electron energy loss spectroscopy (EELS) and Raman spectroscopy. The mass density, hardness, residual stress, optical band gap, and electrical resistivity were determined, and their relation to the film’s chemical structure are discussed. It was found that the graphitic component increases with increasing sputtering power density. This is accompanied by a decrease in the electrical resistivity, optical band gap, mass density, and hardness. Increasing the hydrogen content in the sputtering gas mixture results in decreasing hardness (14 GPa to 3 GPa) and mass density, and increasing optical band gap and electrical resistivity. The variation in the physical properties and chemical structures of these films can be explained in terms of the changes in the volume of sp2-bonded clusters in the a–C films and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a–C: H films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Meyerson and F.W. Smith, J. Non-Cryst. Solids 35/36, 435 (1980).

    Article  Google Scholar 

  2. L.P. Andersson, Thin Solid Films 86, 193 (1981).

    Article  CAS  Google Scholar 

  3. A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, J. Appl. Phys. 54, 4590 (1983).

    Article  CAS  Google Scholar 

  4. T. Mori and Y. Namba, J. Vac. Sci. Technol. A1, 23 (1983).

    Article  Google Scholar 

  5. D.R. McKenzie, R.C. McPhedran, L.C. Botten, N. Savvides, and R. P. Netterfield, Appl. Opt. 21, 3615 (1982).

    Article  CAS  Google Scholar 

  6. H. Kurokawa, T. Mitani, and T. Yonezawa, IEEE Transactions on Magnetics, Mag-23, 5 (1987).

    Google Scholar 

  7. C. Weissmantel, Proc. EMRS Meet., 49 (1987).

  8. R.P. Vidano and D.B. Fischbach, Solid State Commun. 39, 341 (1981).

    Article  CAS  Google Scholar 

  9. H-C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton, and S.T. Meyer, J. Vac. Sci. Technol. A6, 2307 (1988).

    Article  Google Scholar 

  10. C. Beny-Bassez and J. N. Rovzavd, Scanning Electron Microscopy, 119 (1985).

  11. P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, Carbon 20 (5), 427 (1982).

    Article  CAS  Google Scholar 

  12. R.O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B 29, 3482 (1984).

    Article  CAS  Google Scholar 

  13. A. Richter, H-J. Scheibe, W. Pompe, K-W. Brzezinka, and I. Muhling, J. Non-Cryst. Solids 88, 131 (1986).

    Article  CAS  Google Scholar 

  14. D. Beeman, J. Silverman, R. Lynds, and M.R. Anderson, Phys. Rev. B 30, 870 (1984).

    Article  CAS  Google Scholar 

  15. J. Fink, T. Muller-Heinzerling, J. Pfluger, A. Bubenzer, P. Koidl, and G. Crecelius, Solid State Commun. 47, 887 (1983).

    Article  Google Scholar 

  16. J. Fink, T. Muller-Heinzerling, J. Pfluger, B. Dischler, D. Koidl, A. Bubenzer, and R.E. San, Phys. Rev. B 30, 4713 (1984).

    Article  CAS  Google Scholar 

  17. R.H. Jarman, G.J. Ray, R.W. Stanley, and G.W. Izajac, Appl. Phys. Lett. 49 (17), 1065 (1986).

    Article  CAS  Google Scholar 

  18. C. Gao, Y. Y. Wang, A. L. Ritter, and J. R. Dennison, Phys. Rev. Lett. 62 (8), 945 (1989).

    Article  CAS  Google Scholar 

  19. F. Jansen, M. Machonkin, S. Kaplan, and S. Hark, J. Vac. Sci. Technol. A3 (3), 605 (1985).

    Article  Google Scholar 

  20. A. Grill, B.S. Meyerson, V.V. Patel, J. A. Reimer, and M.A. Petrich, J. Appl. Phys. 61 (8), 2874 (1987).

    Article  CAS  Google Scholar 

  21. F.W. Smith, J. Appl. Phys. 55 (3), 764 (1984).

    Article  CAS  Google Scholar 

  22. D. R. McKenzie, R. C. McPhedran, N. Savvides, and L. C. Bolten, Phil. Mag. 48, 341 (1983).

    Article  CAS  Google Scholar 

  23. N. J. Zaluzec, Ultramicroscopy 9, 319 (1982).

    Article  CAS  Google Scholar 

  24. H. Vora and T.J. Moravec, J. Appl. Phys. 52 (10), 6151 (1981).

    Article  CAS  Google Scholar 

  25. C. Weissmantel, Thin Solid Films 58, 101 (1979).

    Article  CAS  Google Scholar 

  26. F.R. McFeely, S.P. Kowlaczyk, L. Ley, R.G. Cavell, R.A. Pollak, and D. A. Shirley, Phys. Rev. B 9, 5268 (1974).

    Article  CAS  Google Scholar 

  27. H. Tsai and D. B. Bogy, J. Vac. Sci. Technol. A5 (6), 3287 (1987).

    Article  Google Scholar 

  28. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press).

  29. B.E. Warren, Phys. Rev. 9, 693 (1941).

    Article  Google Scholar 

  30. R.E. Franklin, Proc. Roy. Soc. A209, 196 (1951).

    Google Scholar 

  31. G. M. Jenkins, K. Kawamura, and L. Ban, Proc. Roy. Soc. A327, 501 (1972).

    Google Scholar 

  32. J. Kakinoki, K. Katada, T. Hanawa, and T. Ino, Acta Cryst. 13, 171 (1960).

    Article  Google Scholar 

  33. B. J. Stenhouse and P. J. Grout, J. Non-Crystalline Solids 27, 247 (1978).

    Article  CAS  Google Scholar 

  34. J.C. Phillips, Phys. Rev. Lett. 42, 153 (1979).

    Article  Google Scholar 

  35. J.C. Angus and F. Jansen, J. Vac. Sci. Technol. A6, 1778 (1988).

    Article  Google Scholar 

  36. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  37. M. Rubin, C.B. Hopper, N-H. Cho, and B. Bhushan, J. Mater. Res. 5, 2538 (1990).

    Article  CAS  Google Scholar 

  38. R.J. Jaccodine and W.A. Schlegee, J. Appl. Phys. 37 (6), 2429 (1966).

    Article  CAS  Google Scholar 

  39. W. Y. Liang and S. Cundy, Phil. Mag. 19, 1031 (1969).

    Article  CAS  Google Scholar 

  40. E. A. Taft and H.R. Phillip, Phys. Rev. 138, A197 (1965).

    Article  Google Scholar 

  41. R.F. Egerton and M.J. Whelan, Phil. Mag. 30, 739 (1974).

    Article  CAS  Google Scholar 

  42. R. F. Egerton and M. J. Whelan, J. Electron Spectrosc. Rel. Phenom. 3, 232 (1974).

    Article  CAS  Google Scholar 

  43. A. Koma and K. Miki, Appl. Phys. A34, 35 (1984).

    Article  CAS  Google Scholar 

  44. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  45. J. Robertson, Adv. Phys. 35, 317 (1986).

    Article  CAS  Google Scholar 

  46. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

    Article  CAS  Google Scholar 

  47. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Films Analysis (North Holland, Amsterdam, 1986).

    Google Scholar 

  48. J. Tauc, R. Grigorovic, and A. Vancu, Phys. Status Solids 15, 627 (1966).

    Article  CAS  Google Scholar 

  49. W. Scharff, K. Hammer, O. Stenzel, J. Ullman, M. Vogel, T. Frauenheim, B. Eibisch, S. Roth, S. Schulze, and I. Muhling, Thin Solid Films 171, 157 (1989).

    Article  CAS  Google Scholar 

  50. J. Robertson and E.P. O’Reilly, Phys. Rev. B 35, 2946 (1987).

    Article  CAS  Google Scholar 

  51. B. Dischler, A. Bubenzer, and P. Koidl, Solid State Commun. 48, 105 (1983).

    Article  CAS  Google Scholar 

  52. M.P. Nadler, T.N. Donovan, and A.K. Greene, Appl. Surf. Sci. 18, 10 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, N.H., Krishnan, K.M., Veirs, D.K. et al. Chemical structure and physical properties of diamond-like amorphous carbon films prepared by magnetron sputtering. Journal of Materials Research 5, 2543–2554 (1990). https://doi.org/10.1557/JMR.1990.2543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2543

Navigation