Skip to main content
Log in

Electrical resistance of metallic contacts on silicon and germanium during indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of indentation on the electrical resistance of rectifying gold-chromium contacts on silicon and germanium have been studied using nanoindentation techniques. The DC resistance of circuits consisting of positively and negatively biased contacts with silicon and germanium in the intervening gap was measured while indenting either directly in the gap or on the contacts. Previous experiments showed that a large decrease in resistance occurs when an indentation bridges a gap, which was used to support the notion that a transformation from the semiconducting to the metallic state occurs beneath the indenter. The experimental results reported here, however, show that a large portion of the resistance drop is due to decreases in the resistance of the metal-to-semiconductor interface rather than the bulk semiconductor. Experimental evidence supporting this is presented, and a simple explanation for the physical processes involved is developed which still relies on the concept of an indentation-induced, semiconducting-to-metallic phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Gupta and A.L. Ruoff, J. Appl. Phys. 51, 1072 (1980).

    Article  CAS  Google Scholar 

  2. S. C. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. Lett. 58, 775 (1987).

    Article  CAS  Google Scholar 

  3. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett. 103A, 137 (1984).

    Article  Google Scholar 

  4. H. Minomura and H.G. Drickamer, J. Phys. Chem. Solids 23, 451 (1962).

    Article  CAS  Google Scholar 

  5. J.Z. Hu, L.D. Merkle, CS. Menoni, and I. L. Spain, Phys. Rev. B 34, 4679 (1986).

    Article  CAS  Google Scholar 

  6. S.B. Qadri, E.F. Skelton, and A.W. Webb, J. Appl. Phys. 54, 3609 (1983).

    Article  CAS  Google Scholar 

  7. O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, and H. Endo, Philos. Mag. 29, 547 (1974).

    Article  CAS  Google Scholar 

  8. I.V. Gridneva, Yu. V. Milman, and V.I. Trefilov, Phys. Status Solidi (a) 14, 177 (1972).

    Article  CAS  Google Scholar 

  9. S. Danyluk, D.S. Kim, and J. Kalejs, J. Mater. Sci. Lett. 4, 1135 (1985).

    Article  CAS  Google Scholar 

  10. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Phys. Rev. Lett. 21, 2156 (1988).

    Article  Google Scholar 

  11. G. M. Pharr, W.C. Oliver, and D.R. Clarke, J. Elec. Mater. 19, 881 (1990).

    Article  CAS  Google Scholar 

  12. G. M. Pharr, W. C. Oliver, and D. R. Clarke, Scripta Metall. 23, 1949 (1989).

    Article  CAS  Google Scholar 

  13. P. M. Sargent, “Factors Affecting Microhardness of Solids”, Ph.D. Dissertation, University of Cambridge (1981).

  14. A. P. Gerk and D. Tabor, Nature 271, 732 (1978).

    Article  CAS  Google Scholar 

  15. D. Tabor, Nature 273, 406 (1978).

    Article  CAS  Google Scholar 

  16. S.G. Roberts, P.D. Warren, and P.B. Hirsch, J. Mater. Res. 1, 162 (1986).

    Article  CAS  Google Scholar 

  17. J. J. Gilman, in The Science of Hardness Testing and Its Research Applications, edited by J. H. Westbrook and H. Conrad (American Society for Metals, Metals Park, OH, 1973), p. 54.

  18. G. M. Pharr, W. C. Oliver, and D. S. Harding, J. Mater. Res. 6, 1129 (1991).

    Article  CAS  Google Scholar 

  19. V. L. Rideout and C. R. Crowell, Appl. Phys. Lett. 10, 329 (1967).

    Article  CAS  Google Scholar 

  20. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  21. W. C. Oliver, R. Hutchings, and J. B. Pethica, in ASTM STP 889, edited by P. J. Blau and B. R. Lawn (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90–108.

  22. D. Stone, W. R. LaFontaine, P. Alexopoulos, T-W. Wu, and Che-Yu Li, J. Mater. Res. 3, 141 (1988).

    Article  CAS  Google Scholar 

  23. R. F. Cook and G. M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  24. J. Lankford and D.L. Davidson, J. Mater. Sci. 14, 1662 (1979).

    Article  CAS  Google Scholar 

  25. T. Sata, K. Takamoto, and H. Yoshikawa, Bull. Jpn. Soc. Prec. Engrg. 3, 13 (1969).

    Google Scholar 

  26. K.E. Puttick, M. A. Shahid, and M. M. Hosseini, J. Phys. D 12, 195 (1979).

    CAS  Google Scholar 

  27. S.C. Langford, D.L. Doering, and J.T. Dickinson, Phys. Rev. Lett. 24, 2795 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pharr, G.M., Oliver, W.C., Cook, R.F. et al. Electrical resistance of metallic contacts on silicon and germanium during indentation. Journal of Materials Research 7, 961–972 (1992). https://doi.org/10.1557/JMR.1992.0961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.0961

Navigation