Skip to main content
Log in

Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diphasic yttrium-aluminum garnet (Y3Al5O12, YAG) sols were made by hydrolysis of aluminum and yttrium isopropoxides. The sols were gelled across TEM grids to make films. The films were heat-treated up to 1550 °C for as long as 300 h. Heat-treatments of bulk gel were also done. Microstructure and phase evolution were observed by TEM. Some observations were done in situ in a TEM hot-stage. YAG fraction and grain size, matrix grain size, nuclei/area, and film thickness were measured. Bulk samples were characterized by x-ray, DTA, and TGA. Yttrium-aluminum monoclinic (YAM) and transition alumina appeared at 800 °C. YAG nucleated between 800 °C and 950 °C. Nucleation was weakly correlated with the transient presence of YAlO3 garnet, and was eventually site-saturated at 0.3/μm3. The change in grain growth rate of the YAM and transition alumina matrix correlated with the change in the growth rate of YAG. Between 850 °C and 1000 °C YAG growth had t1/2 dependence and 280 kJ/mole activation energy. Below 850 °C nucleation was continuous, and growth had t0.85 dependence. Above 1000 °C YAG growth had t1/4 dependence, and the matrix grains coarsened with t1/4 dependence. Thicker films reacted faster because the nuclei/area and the growth rate after nucleation scaled with thickness. YAG growth was accompanied by formation of 20–100 nm subgrains. In the late stages of matrix grain coarsening there was also some reaction to YAG by a different process. Nucleation and growth kinetics are compared with other systems. Possible mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Yoder and M. L. Keith, Am. Min. 7, 519 (1951).

    Google Scholar 

  2. I. Warshaw and R. Roy, J. Am. Ceram. Soc. 42, 434 (1959).

    Article  CAS  Google Scholar 

  3. G. DeWith and H. J. A. van Djik, Mater. Res. Bull. XIX, 1669 (1984).

    Google Scholar 

  4. G. Gowda, J. Mater. Sci. Lett. 5, 1029 (1986).

    Article  CAS  Google Scholar 

  5. H. Haneda, A. Watanabe, S. Matsuda, T. Sakai, S. Shirasaki, and H. Yamamura, Sintering 87, edited by S. Somiya, M. Shimada, M. Yoshimura, and R. Watanabe (Elsevier Science Publishers Ltd., Essex, England, 1988), p. 381.

  6. M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, J. Appl. Phys. 67, 453 (1990).

    Article  CAS  Google Scholar 

  7. D. R. Messier and G. E. Gazza, Am. Ceram. Soc. Bull. 51, 692 (1972).

    CAS  Google Scholar 

  8. R. S. Hay, E. E. Hermes, and K.A. Jepsen, Ceramic TransactionsCeramic Thin and Thick Films, edited by B. V. Hiremath (The American Ceramic Society, Westerville, OH, 1990), Vol. 11, p. 243.

  9. M. Inoue, H. Otsu, H. Kominami, and T. Inui, J. Am. Ceram. Soc. 74, 1452 (1991).

    Article  CAS  Google Scholar 

  10. T. Takamori and L. D. David, Bull. Am. Ceram. Soc. 65, 1282 (1986).

    CAS  Google Scholar 

  11. P. Apte, H. Burke, and H. Pickup, J. Mater. Res. 7, 706 (1992).

    Article  CAS  Google Scholar 

  12. G. E. Gazza and S. K. Dutta, U. S. Patent 3 767 745 (1973).

  13. G. E. Gazza and S. K. Dutta, U. S. Patent 4 029 755 (1977).

  14. T. Noguchi and M. Mizuno, Kogyo Kogaku Zasshi 70, 839 (1969).

    Google Scholar 

  15. G. Petot-Ervas, D. Deweirder, M. Loudjani, B. Lesage, and A. M. Huntz, Adv. Ceram. 23, 125 (1987).

    CAS  Google Scholar 

  16. J. D. Cawley and J. W. Halloran, J. Am. Ceram. Soc. 69, C-195 (1986).

  17. R. C. McCune, W. T. Donlon, and R. C. Ku, J. Am. Ceram. Soc. 69, C-196 (1986).

  18. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, Appl. Phys. Lett. 4, 182 (1964).

    Article  CAS  Google Scholar 

  19. J. L. Bates and J. E. Gamier, J. Am. Ceram. Soc. 64, C-138 (1981).

  20. G. S. Corman, USAF/WRDC/TR-90-4059 (1990).

  21. L. E. Matson, R. S. Hay, and T. Mah, Ceram. Eng. Sci. Proc. 11 (1990).

  22. R. S. Hay and E. E. Hermes, Ceram. Eng. Sci. Proc. 11, 1526 (1990).

    Article  CAS  Google Scholar 

  23. R. S. Hay, Ceram. Eng. Sci. Proc. 12, 1064 (1991).

    Article  CAS  Google Scholar 

  24. B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 286 (1975).

    CAS  Google Scholar 

  25. B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975).

    CAS  Google Scholar 

  26. F. W. Dynys and J.W. Halloran, J. Am. Ceram. Soc. 65, 442 (1982).

    Article  CAS  Google Scholar 

  27. L. Pach, R. Roy, and S. Komarneni, J. Mater. Res. 5, 278 (1990).

    Article  CAS  Google Scholar 

  28. R. Roy, Y. Suwa, and S. Komarneni, Science of Ceramic Chemical Processing, edited by L. L. Hench and D. R. Ulrich (John Wiley and Sons, New York, 1986), p. 247.

  29. M. Kumagi and G. L. Messing, J. Am. Ceram. Soc. 67, C-230 (1984).

  30. R. A. Shelleman, G.L. Messing, and M. Kumagi, J. Non-Cryst. Solids 82, 277 (1986).

    Article  CAS  Google Scholar 

  31. G. L. Messing, M. Kumagi, R. A. Shelleman, and J. L. McArdle, Science of Ceramic Chemical Processing, edited by L. L. Hench and D. R. Ulrich (John Wiley and Sons, New York, 1986), p. 259.

  32. W. Wei and J. W. Halloran, J. Am. Ceram. Soc. 71 (7), 581 (1988).

    Article  CAS  Google Scholar 

  33. D. X. Li and W. J. Thomson, J. Mater. Res. 5, 1963 (1990).

    Article  CAS  Google Scholar 

  34. J. C. Huling and G. L. Messing, J. Am. Ceram. Soc. 74 (10), 2374 (1991).

    Article  CAS  Google Scholar 

  35. S. Sundaresan and I. A. Aksay, J. Am. Ceram. Soc. 74 (10), 2388 (1991).

    Article  CAS  Google Scholar 

  36. K. S. Mazdiyasni, Ceramics Int. 8, 42 (1982).

    Article  CAS  Google Scholar 

  37. L. M. Brown and K. S. Mazdiyasni, Inorg. Chem. 9, 2783 (1970).

    Article  Google Scholar 

  38. B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 286 (1975).

    CAS  Google Scholar 

  39. B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975).

    CAS  Google Scholar 

  40. E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, MA, 1974), p. 297.

  41. J. W. Reed and A. B. Chase, Acta Crystallogr. 15, 812 (1962).

    Article  CAS  Google Scholar 

  42. R-S. Zhou and R. L. Snyder, Acta Crystallogr. B 47, 617 (1991).

    Article  Google Scholar 

  43. T. C. Chou and T. G. Nieh, J. Am. Ceram. Soc. 74 (9), 2270 (1991).

    Article  CAS  Google Scholar 

  44. V. Jayaram and C.G. Levi, Acta Metall. 37 (2), 569 (1989).

    Article  CAS  Google Scholar 

  45. M. L. Keith and R. Roy, Am. Min. 39 (1&2), 1 (1954).

  46. O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano, and A. Hayashida, J. Mater. Sci. 27 (5), 1261 (1992).

    Article  CAS  Google Scholar 

  47. V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Y. P. Udalov, and L. P. Kachalova, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materaly 19 (1), 95 (1983).

    CAS  Google Scholar 

  48. T. A. Parthasarathy, T. Mah, and K. A. Keller, J. Am. Ceram. Soc. (in press).

  49. V. V. Slyozov, Sov. Phys. Solid State 9, 927 (1967).

    Google Scholar 

  50. M. V. Speight, Acta Metall. 16, 133 (1968).

    Article  CAS  Google Scholar 

  51. H. O. Kirchner, Metall. Trans. 2, 2861 (1971).

    Article  Google Scholar 

  52. A. J. Ardell, Acta Metall. 20, 601 (1972).

    Article  Google Scholar 

  53. J. W. Martin and R. D. Doherty, Stability of Microstructure in Metallic Systems, Cambridge Solid State Science Series (Cambridge Univ. Press, 1976).

  54. P. Wynblatt and N. A. Gjostein, Acta Metall. 24, 1165 (1976).

    Article  CAS  Google Scholar 

  55. C. V. Thompson, Acta Metall. 36 (11), 2929 (1988).

    Article  CAS  Google Scholar 

  56. S. C. Hardy and P. W. Voorhees, Metall. Trans. 19A, 2713 (1988).

    Article  CAS  Google Scholar 

  57. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  58. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    CAS  Google Scholar 

  59. K. Tsumuraya and Y. Miyata, Acta Metall. 31 (4), 437 (1983).

    Article  CAS  Google Scholar 

  60. L. C. Brown, Acta Metall. 37 (1), 71 (1989).

    Article  Google Scholar 

  61. R. T. DeHoff, Acta Metall. Mater. 39 (10), 2349 (1991).

    Article  CAS  Google Scholar 

  62. P. W. Voorhees and R. J. Schaefer, Acta Metall. 35 (2), 327 (1987).

    Article  CAS  Google Scholar 

  63. C. S. Pande, Acta Metall. 35 (11), 2671 (1987).

    Article  CAS  Google Scholar 

  64. M. P. Anderson, G. S. Grest, and D. J. Srolovitz, Philos. Mag. B 59 (3), 293 (1989).

    Article  Google Scholar 

  65. H. Hu and B. B. Rath, Metall. Trans. 1, 3181 (1970).

    Google Scholar 

  66. T. Ikegami and Y. Moriyoshi, J. Am. Ceram. Soc. 68 (11), 597 (1985).

    Article  CAS  Google Scholar 

  67. R. A. DiMilia, J. Am. Ceram. Soc. 72 (1), 33 (1989).

    Article  Google Scholar 

  68. G. S. Grest, D. J. Srolovitz, and M. P. Anderson, Acta Metall. 33 (3), 509 (1985).

    Article  CAS  Google Scholar 

  69. D. Turnbull, Solid State Phys. 3, 225 (1956).

    Article  CAS  Google Scholar 

  70. G. Shi and J. H. Seinfeld, J. Mater. Res. 6, 2091 (1991).

    Article  CAS  Google Scholar 

  71. D. W. Hoffman, R. Roy, and S. Komarneni, J. Am. Ceram. Soc. 67, 468 (1984).

    Article  CAS  Google Scholar 

  72. G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Res. 2, 489 (1987).

    Article  CAS  Google Scholar 

  73. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, U.K., 1981).

  74. H. D. Keith and F. J. Padden, J. Appl. Phys. 34 (8), 2409 (1963).

    Article  CAS  Google Scholar 

  75. A. Spry, Metamorphic Textures (Pergamon Press, Oxford, New York, 1969).

  76. D. J. Srolovitz and S. A. Safran, J. Appl. Phys. 60, 247 (1986).

    Article  CAS  Google Scholar 

  77. K. T. Miller, F. F. Lange, and D. B. Marshall, J. Mater. Res. 5, 151 (1990).

    Article  CAS  Google Scholar 

  78. E. Werner, Acta Metall. 37 (7), 2047 (1989).

    Article  CAS  Google Scholar 

  79. A. H. Carim, B. A. Turtle, D. H. Doughty, and S. L. Martinez, J. Am. Ceram. Soc. 74 (6), 1455 (1991).

    Article  CAS  Google Scholar 

  80. C-C. Hsueh and M. L. Mecartney, J. Mater. Res. 6, 2208 (1991).

    Article  CAS  Google Scholar 

  81. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  82. A. E. Kolmogorov, Akad. Nauk. SSSR. IZV. Ser. Mat. 1, 355 (1937).

    Google Scholar 

  83. W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min. Engrs. 135, 416 (1939).

    Google Scholar 

  84. J. W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).

  85. H. Schmalzried, Solid State Reactions, 2nd ed. (Verlag Chemie Int., Weinheim, 1981).

  86. V. S. Stubican, Transport in Nonstoichiometric Compounds, NATO ASI Series, edited by G. Simkovich and V. S. Stubican, 345 (1984).

  87. C. Monty, Cryst. Latt. Def. and Amorph. 18, 101 (1989).

    Google Scholar 

  88. H. D. Keith and F. J. Padden, J. Appl. Phys. 35 (4), 1286 (1964).

    Article  CAS  Google Scholar 

  89. R. S. Hay and L. E. Matson, Acta Metall. Mater. 39 (8), 1981 (1991).

    Article  CAS  Google Scholar 

  90. A. D. Rollett, D. J. Srolovitz, R. D. Doherty, and M. P. Anderson, Acta Metall. 37 (2), 627 (1989).

    Article  CAS  Google Scholar 

  91. R. A. Vandermeer and B. B. Rath, Metall. Trans. 20A, 391 (1989).

    Article  CAS  Google Scholar 

  92. C. W. Price, Acta Metall. Mater. 39, 1807 (1991).

    Article  Google Scholar 

  93. J. M. Dynys, R. L. Coble, W. S. Coblenz, and R. M. Cannon, Sintering Processes, Materials Science Research, edited by G. C. Kuczynski, 13, 391 (1980).

    CAS  Google Scholar 

  94. R. J. Gaboriaud, Philos. Mag. A 44 (3), 561 (1981).

    Article  CAS  Google Scholar 

  95. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, Inc., San Diego, CA, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, R.S. Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films. Journal of Materials Research 8, 578–604 (1993). https://doi.org/10.1557/JMR.1993.0578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0578

Navigation