Skip to main content
Log in

Energy principle of indentation contact: The application to sapphire

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The recently developed energy principle of indentation mechanics was applied to the continuous indentation test performed on pure sapphire. Three crystallographic planes, M = (10$\overline 1$0), A = (1$\overline 1$10), and C = (0001), have been indented by a symmetrical triangular pyramid (Berkovich). The distinct anisotropic behavior of the indented crystal has been observed for the maximum indentation loads of 1.961 N, 0.686 N, and 0.392 N. The indentation hysteresis loop energy and the related “true hardness parameter” have been determined for various crystallographic orientations, as well as for two different orientations of the indenter. The observed effects have been discussed in terms of the energy principle of indentation with crystallographic considerations. The effective resolved shear stresses for the slip and twinning systems were calculated and applied to the anisotropic indentation behavior. It was concluded that the energy principle is highly recommended for analyzing the data of continuous indentation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Armstrong and W. H. Robinson N. Z. J. Sci. 17, 429 (1974).

    CAS  Google Scholar 

  2. W. J. Cousins R. W. Armstrong and W. H. Robinson J. Mater. Sci. 10, 1655 (1975).

    Article  CAS  Google Scholar 

  3. D. Newey M.A. Wilkins and H. M. Pollock J. Phys. E: Sci. Instrum. 15, 119 (1982).

    Article  CAS  Google Scholar 

  4. J. B. Pethica R. Hutchings and W. C. Oliver Philos. Mag. A48, 593 (1983).

    Article  Google Scholar 

  5. R.F. Cook and G.M. Pharr J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  6. R. Tandon D. J. Green and R. F. Cook J. Am. Ceram. Soc. 73, 2619 (1990).

    Article  CAS  Google Scholar 

  7. W. R. LaFontaine C. A. Paszkiet M. A. Korhonen and Che-Yu Li, J. Mater. Res. 6, 2084 (1991).

    Article  CAS  Google Scholar 

  8. D. Stone W. R. LaFontaine P. Alexopoulos T.W. Wu and C.Y. Li, J. Mater. Res. 3, 141 (1988).

    Article  CAS  Google Scholar 

  9. B. N. Lucas W. C. Oliver R. K. Williams J. Brynestad and M. E. O’Hern, J. Mater. Res. 6, 2519 (1991).

    Article  CAS  Google Scholar 

  10. G. M. Pharr W. C. Oliver R. F. Cook P. D. Kirchner M. C. Kroll T. R. Dinger and D. R. Clarke J. Mater. Res. 7, 961 (1992).

    Article  CAS  Google Scholar 

  11. T.F. Page W. C. Oliver and C.J. McHargue J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  12. M.E. O’Hern, C.J. McHargue C.W. White and G.C. Farlow Nucl. Instrum. Methods B46, 171 (1990).

    Article  Google Scholar 

  13. R. Nowak K. Ueno and K. Kinoshita in Fracture Mechanics of Ceramics, edited by R. C. Bradt D. P. H. Hasselman D. Mung M. Sakai and V. Ya. Shevchenko (Plenum Press, New York, 1992), Vol. 10, pp. 155–174.

    Book  Google Scholar 

  14. M. F. Doerner and W. D. Nix J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  15. G.M. Pharr W.C. Oliver and F.R. Brotzen J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  16. C.W. Shih M. Yang and J.C.M. Li J. Mater. Res. 6, 2623 (1991).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. A. K. Bhattacharya and W. D. Nix Int. J. Solids Structures 24, 881 (1988).

    Article  Google Scholar 

  19. T.A. Laursen and J.C. Simo J. Mater. Res. 7, 618 (1992).

    Article  CAS  Google Scholar 

  20. H. R. Hertz Miscellaneous Papers (Macmillan, London, 1986), Chaps. 5 and 6.

    Google Scholar 

  21. K. L. Johnson Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  22. P. B. Hirsch P. Pirouz S. G. Roberts and P. D. Warren Philos. Mag. 52B, 759 (1985).

    Article  Google Scholar 

  23. A. Nadai Plasticity (McGraw-Hill, New York, 1931), p. 247.

    Google Scholar 

  24. I.N. Sneddon J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  25. >(a) M. Sakai >Acta Metall. Mater., in press; (b) M. Sakai and R. Nowak Ceramics–Adding the Value, edited by M. J. Bannister Aust. Ceram. Soc. 2, 922-931 (1992).

  26. G. M. Pharr and W.C. Oliver J. Mater. Res. 4, 94 (1989).

    Article  CAS  Google Scholar 

  27. D. L. Joslin and W. C. Oliver J. Mater. Res. 5, 123 (1990).

    Article  CAS  Google Scholar 

  28. G. M. Pharr and R. F. Cook J. Mater. Res. 5, 847 (1990).

    Article  Google Scholar 

  29. K. Tanaka H. Koguchi and T. Mura Int. J. Eng. Sci. 27, 11 (1989).

    Article  CAS  Google Scholar 

  30. M. L. Kronberg Acta Metall. 5, 507 (1957).

    Article  CAS  Google Scholar 

  31. T. Brethau J. Castaing J. Rabier and P. Veyssiere Adv. Phys. 28, 829 (1979).

    Article  Google Scholar 

  32. R. C. Bradt and W. D. Scott in Alumina Chemicals: Science and Technology Handbook, edited by LeRoy D. Hart (The American Ceramics Society Inc., Westerville, OH, 1990), pp. 23–39.

    Google Scholar 

  33. R. Nowak K. Ueno and K. Kinoshita Proc. 6th Int. Conf. Mechan. Behav. Mater., edited by M. Jono and T. Inoue (Perga-mon Press, Oxford, 1991), pp. 551–556.

    Google Scholar 

  34. G. M. Pharr and W. C. Oliver Mater. Res. Bull. XVII 28 (1992).

    Article  Google Scholar 

  35. B.J. Hockey J. Am. Ceram. Soc. 54, 223 (1971).

    Article  CAS  Google Scholar 

  36. W. Kollenberg J. Mater. Sci. 23, 3321 (1988).

    Article  CAS  Google Scholar 

  37. M. Kaji and R. C. Bradt in press.

  38. M. Iwasa and R. C. Bradt Adv. Ceram. 10, 767 (1985).

    Google Scholar 

  39. R. Nowak and M. Sakai unpublished work.

  40. F.W. Daniels and C. G. Dunn Trans. Am. Soc. Met. 41, 419 (1949).

    Google Scholar 

  41. K. P. D. Lagerlof T.E. Mitchell and A.H. Heuer in Interfaces and Contacts, edited by R. Ludeke and K. Rose (Mater. Res. Soc. Symp. Proc. 18, Elsevier Science Publishing, New York, 1984), p. 49.

    Google Scholar 

  42. R. Nowak Acta Crystallogr. A43, C-96 (1987).

    Article  Google Scholar 

  43. J. Pospiech and J. Gryziecki Arch. Hutn. XV 267 (1970).

    Google Scholar 

  44. C.A. Brookes J.B. O’Neill, and A.W. Redfern Proc. R. Soc. London A322, 73 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, R., Sakai, M. Energy principle of indentation contact: The application to sapphire. Journal of Materials Research 8, 1068–1078 (1993). https://doi.org/10.1557/JMR.1993.1068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1068

Navigation