Skip to main content
Log in

Microscopy and microindentation mechanics of single crystal Fe−3 wt. % Si: Part I. Atomic force microscopy of a small indentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomic force microscope measurements of elastic-plastic indentation into an Fe−3 wt. % Si single crystal showed that the volume displaced to the surface is nearly equal to the volume of the cavity. The surface displacement profiles and plastic zone size caused by a 69 nm penetration of a Vickers diamond tip are reasonably represented by an elastic-plastic continuum model. Invoking conservation of volume, estimates of the number of dislocations emanating from the free surface are reasonably consistent with the number of dislocations that have formed in the plastic zone to represent an average calculated plastic strain of 0.044.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Heinzelman, E. Meyers, L. Scandella, P. Griither, Th. Jung, H. Huer, H-R. Hidber, and H-J. Güntherodt, Wear 135, 109 (1989).

    Article  Google Scholar 

  2. N. Burnham and R. Cotton, J. Vac. Sci. Technol. A 9, 2548 (1991).

    Article  CAS  Google Scholar 

  3. T. W. Wu, J. Mater. Res. 6, 407 (1991).

    Article  Google Scholar 

  4. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  5. S. Venkataraman, D. L. Kohlstedt, and W. W. Gerberich, J. Mater. Res. 7, 1126 (1992).

    Article  CAS  Google Scholar 

  6. T. F. Page, W. C. Oliver, and C. J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  7. G. M. Pharr and W. C. Oliver, Mater. Res. Bull. XVII, 28 (1992).

    Article  Google Scholar 

  8. S. Venkataraman, D. L. Kohlstedt, and W. W. Gerberich, in Thin Films: Stresses and Mechanical Properties III, edited by W. D. Nix, J. C. Bravman, E. Arzt, and L. B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 591.

    Google Scholar 

  9. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  10. K.L. Johnson, J. Mech. Phys. Solids 18, 155 (1970).

    Article  Google Scholar 

  11. N.A. Fleck, H. Otoyo, and A. Needleman, Int. J. Solids Structures 29, 1613 (1992).

    Article  Google Scholar 

  12. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  13. S. Venkataraman, H. Huang, W. Zielinski, and W. W. Gerberich (unpublished research).

  14. J.B. Pethica and D. Tabor, Surf. Sci. 89, 182 (1979).

    Article  CAS  Google Scholar 

  15. W.W. Gerberich, A.G. Wright, E. Kurman, and K.A. Peterson, Fracture: Measurement of Localized Deformation by Novel Techniques, edited by W. W. Gerberich and D. L. Davidson (TMS-AIME, Warrendale, PA, 1984), p. 59.

    Google Scholar 

  16. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950).

    Google Scholar 

  17. F.J. Lockett, J. Mech. Phys. Solids 11, 345 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, S., Huang, H., Venkataraman, S. et al. Microscopy and microindentation mechanics of single crystal Fe−3 wt. % Si: Part I. Atomic force microscopy of a small indentation. Journal of Materials Research 8, 1291–1299 (1993). https://doi.org/10.1557/JMR.1993.1291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1291

Navigation