Skip to main content
Log in

Nanocrystalline α–Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline α–Fe, Fe3C, and Fe7C3, particles with narrow size distributions were produced by CO2 laser pyrolysis of vapor mixtures of Fe(CO)5 and C2H4. Details of the synthesis procedure are discussed. Mossbauer spectroscopy and x-ray diffraction were used to identify the structural phases and the former was used also to study the magnetism of the nanoparticles. All the nanoparticles were observed to be ferromagnetic in this size range. If excess C2H4 appears in the reactant gas mixture, several monolayers of pyrolytic carbon were observed to form on the particle surface, as deduced from transmission electron microscopy and Raman scattering studies. Results of thermo-gravimetric analysis/mass spectroscopy studies of this carbon coating indicate it is gasified in hydrogen at temperatures T ∼ 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Haggerty, in Laser-induced Chemical Processes, edited by J.I. Steinfeld (Plenum Press. New York, 1981).

    Google Scholar 

  2. R. Fantoni, E. Borsella. S. Piccirillo, and S. Enzo, SPIE 1279, 77 (1990).

    CAS  Google Scholar 

  3. P. R. Buerki, T. Troxlcr, and S. Leutwyler, in High Temperature Science (Humana Press Inc., 1990), Vol. 27. p. 323.

  4. F. Curcio, G. Ghiglionc, M. Musci, and C. Nannetti, Appl. Surf. Sci. 36, 52–58 (1989).

    Article  Google Scholar 

  5. G. W. Rice and R.L. Woodin, J. Am. Ceram. Soc. 71, C181 (1988).

    Article  CAS  Google Scholar 

  6. F. Curcio, M. Musci, and N. Notaro, Appl. Surf. Sci. 46, 225–229 (1990).

    Article  CAS  Google Scholar 

  7. R.A. Fiato, G. W. Rice, S. Miseo, and S.L. Soled, United States Patent. 4 637 753 (1987).

  8. G. W. Rice, R.A. Fiato, and S.L. Soled, United States Patent, 4 659 681 (1987).

  9. H.L. Yakel, Int. Met. Rev. 30, 17 (1985).

    Article  CAS  Google Scholar 

  10. J-P. Senatcur and R. Fruchart, Academic Dcs Sciences 1, 3114 (1963).

    Google Scholar 

  11. A. Akamatu and K. Sato, Bull. Chcm. Soc. Jpn. 22, 127 (1949).

    Article  Google Scholar 

  12. V.J. Kehrer and H. Lcidheiser, J. Phys. Chcm. 58, 550 (1954).

    Article  CAS  Google Scholar 

  13. R. L. Cohen, Applications of Mössbauer Spectroscopy, edited by R. L. Cohen (Academic Press, New York, 1980).

    Google Scholar 

  14. H.C. Echstrom and W.A. Adock, J. Am. Chem. Soc. 72, 1042 (1950).

    Article  Google Scholar 

  15. A. A. Zhukov, L. E. Shtcrenberg, V. A. Shalashov, V. K. Tomas, and N.A. Berezovskaya, Acta Mctall. 21 (3), 195–197 (1973).

    Article  CAS  Google Scholar 

  16. A. Tsuzuki, S. Sago, S. Hirano, and S. Naka, J. Mater. Sci. 19 (8), 2513–2518 (1984).

    Article  CAS  Google Scholar 

  17. L. E. Shterenberg, V.N. Slesarev, I. A. Korsunskaya, and D. S. Kamenetskaya, High Temp.-High Press. 7, 517–522 (1975).

    Google Scholar 

  18. S. Naka, A. Tsuzuki, and S. Hirano, J. Mater. Sci. 119, 259–262 (1984).

    Article  CAS  Google Scholar 

  19. S. Naka. A. Tsuzuki, Y. Takcda, and S. Hirano, Proc. Int. Conf., September–October, 1980, Japan, p. 929.

  20. S. Tajima and S-I. Hirano, Jpn. J. Appl. Phys., Part I 29 (4), 662–668 (1990).

    Article  CAS  Google Scholar 

  21. F. II. Herbstein and J. A. Snyman, Inorg. Chem. 3, 894 (1964).

    Article  CAS  Google Scholar 

  22. R. Fruchart and A. Rouault, Ann. Chim. 143, 1615 (1969).

    Google Scholar 

  23. J. Bouchard, Ann. Chim. t. 2, 353–366 (1967).

    Google Scholar 

  24. M. Audier, P. Bowen, and W. Jones, J. Cryst. Growth 63, 125–134 (1983).

    Article  CAS  Google Scholar 

  25. K. W. Andrews, D.J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns (Hill, London, 1971).

    Google Scholar 

  26. M. Audier, Universite Scicntifique et Medicale et a l’Institut National Polytechnique de Grenoble, Ph.D. Thesis, 1980.

  27. J.B. Butt, Catalysis Lett. 7, 61–82 (1990).

    Article  CAS  Google Scholar 

  28. J. A. Amelse, G. Grynkewich, J.B. Butt, and L. H. Schwartz, J. Phys. Chem. 85, 2484–2488 (1981).

    Article  CAS  Google Scholar 

  29. J. Fournier. L. Carreiro, Y-T. Qian. s. Soled, R. Kershaw, K. Dwight, and A. Wold, J. Solid State Chem. 58, 211 (1985).

    Article  CAS  Google Scholar 

  30. S. Hirano and S. Tajima, J. Mater. Sci. 25, 4457 (1990).

    Article  CAS  Google Scholar 

  31. J. M. Stencel, P.C. Eklund, X-X. Bi, and F.J. Derbyshire, Catalysis Today 15, 285 (1992).

    Article  CAS  Google Scholar 

  32. R. R. Patty, G. M. Russwurm, W. A. McClcnny, and D. R. Morgan, Appl. Opt. 13 (12), 2850 (1974).

    Article  CAS  Google Scholar 

  33. X-ray Powder Diffraction Data File, JCPDS, 1991.

  34. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1967).

    Google Scholar 

  35. X-X. Bi, P.C. Rklund, J.M. Stencel, D.N. Taulbcc, H-R Ni, F.J. Derbyshire, and M. Kndo, Carbon Coalings on Iron Carbide Particles Produced by Laser Pyrolysis, Proc. 20th Biennial Conf. on Carbon (Santa Barbara, CA, 23–28 June, 1991). pp. 518–519.

    Google Scholar 

  36. G. P. Huffman, Chemtech August, 504 (1980).

    Google Scholar 

  37. G. Le Caër, J. M. Dubois, and J. P. Scnatcur, J. Solid State Chem. 19, 19 (1976).

    Article  Google Scholar 

  38. T.J. Dines, D. Tither, A. Dehbi, and A. Matthews, Carbon 29 (2). 225–231 (1991).

    Article  CAS  Google Scholar 

  39. N.J. Overall, J. Lumsdon, and D.J. Christopher, Carbon 29 (2), 133–137 (1991).

    Article  CAS  Google Scholar 

  40. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53 (3), 1126–1130 (1970).

    Article  CAS  Google Scholar 

  41. E.J.D. Garba and R. L. Jacobs, J. Phys. Chem. Solids 50 (2), 101–105 (1989).

    Article  CAS  Google Scholar 

  42. X-X. Bi, P. Zhou, and P.C. Eklund, A preliminary study using Scanning Tunneling Microscope (STM) indicates that both Fe3C and Fe7C3 nanocrystalline powders are metallic, in preparation, 1992.

  43. A. R. Scthuraman, X-X. Bi, P.C. Eklund, J.M. Stcncel, O. B. Cavin, and C. R. Hubbard, In-Situ High Temperature X-Ray Diffraction Studies of Nanocrystalline Iron Carbides, Proc. Mater. Res. Soc. Meeting (San Francisco, CA, April 27–May 1, 1992) (1993, in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, XX., Ganguly, B., Huffman, G.P. et al. Nanocrystalline α–Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis. Journal of Materials Research 8, 1666–1674 (1993). https://doi.org/10.1557/JMR.1993.1666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1666

Navigation