Skip to main content
Log in

An investigation of ductility and microstructural evolution in an Al−3% Mg alloy with submicron grain size

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A submicrometer-grained (SMG) Al−3% Mg solid solution alloy, with an initial grain size of ∼0.2 μm, was produced by intense plastic straining. Experiments show that tensile specimens of the SMG alloy exhibit high elongations to failure at low testing strain rates at the relatively low temperature of 403 K. The stress exponent is high (∼7–8) and calculations show deformation is within the region of power-law breakdown. The initial microstructure of the alloy consists of diffuse boundaries between highly deformed grains. At strain rates of ∼10−4 s−1 and lower, plastic deformation leads to dynamic recrystallization and the formation of highly nonequilibrium grain boundaries that gradually evolve into a more equilibrated configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Langdon, Metall. Trans. 13A, 689 (1982).

    Article  Google Scholar 

  2. R. W. Siegel, in Superplasticity in Metals, Ceramics, and Intermetallics, edited by M. J. Mayo, M. Kobayashi, and J. Wadsworth (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 59.

  3. M. J. Mayo, in Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures (Kluwer Press, Dordrecht, The Netherlands, 1993, in press).

    Google Scholar 

  4. M. J. Mayo, D. C. Hague, and D-J. Chen, Mater. Sci. Eng. A (in press).

  5. Z. Cui and H. Hahn, Nanostruct. Mater. 1, 419 (1992).

    Article  CAS  Google Scholar 

  6. N. A. Smirnova, V. I. Levit, V. I. Pilyugin, R. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, Fiz. Met. Metalloved. 61, 1170 (1986).

    CAS  Google Scholar 

  7. R. Z. Valiev, O. A. Kaibyshev, R. I. Kuznetsov, R. Sh. Musalimov, and N.K. Tsenev, Dok. Akad. Nauk SSSR 301, 864 (1988).

    CAS  Google Scholar 

  8. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mater. Sci. Eng. A137, 35 (1991).

    Article  Google Scholar 

  9. R. Z. Valiev, R. R. Mulyukov, and V. V. Ovchinnikov, Philos. Mag. Lett. 62, 253 (1990).

    Article  CAS  Google Scholar 

  10. R.Sh. Musalimov and R.Z. Valiev, Scripta Metall. Mater. 27, 1685 (1992).

    Article  CAS  Google Scholar 

  11. P. Yavari and T. G. Langdon, Acta Metall. 30, 2182 (1982).

    Google Scholar 

  12. T. G. Langdon and R. B. Vastava, in Advances in Fracture Research, edited by D. François (Pergamon Press, Oxford, England, 1981), Vol. 4, p. 1635.

    Google Scholar 

  13. V. M. Segal, V. I. Reznikov, F. E. Drobyshevski, and V. I. Kopylov, Izv. Akad. Nauk SSSR-Metally 1, 115 (1981).

    Google Scholar 

  14. R. Z. Valiev and N. K. Tsenev, in Hot Deformation of Aluminum Alloys, edited by T. G. Langdon, H. D. Merchant, J. G. Morris, and M. A. Zaidi (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 319.

    Google Scholar 

  15. R. Z. Abdulov, R. Z. Valiev, and N. A. Krasilnikov, J. Mater. Sci. Lett. 9, 1445 (1990).

    Article  CAS  Google Scholar 

  16. R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, Scripta Metall. Mater. 27, 855 (1992).

    Article  CAS  Google Scholar 

  17. P. Yavari, D. A. Miller, and T. G. Langdon, Acta Metall. 30, 871 (1982).

    Article  CAS  Google Scholar 

  18. P. Yavari, F.A. Mohamed, and T.G. Langdon, Acta Metall. 29, 1495 (1981).

    Article  CAS  Google Scholar 

  19. Z. Horita and T. G. Langdon, in Strength of Metals and Alloys (ICSMA 7), edited by H.J. McQueen, J-P. Baïlon, J.I. Dickson, J. J. Jonas, and M. G. Akben (Pergamon Press, Oxford, England, 1985), Vol. 1, p. 791.

    Google Scholar 

  20. T. Endo, T. Shimada, and T. G. Langdon, Acta Metall. 32, 1991 (1984).

    Article  CAS  Google Scholar 

  21. Z. Horita, T. Shimada, T. Endo, and T. G. Langdon, in Proceedings of the Third International Conference on Creep and Fracture of Engineering Materials and Structures, edited by B. Wilshire and R.W. Evans (The Institute of Metals, London, England, 1987), p. 113.

    Google Scholar 

  22. W. D. Nix and B. Ilschner, in Strength of Metals and Alloys (ICSMA 5), edited by P. Haasen, V. Gerold, and G. Kostorz (Pergamon Press, Oxford, England, 1980), Vol. 3, p. 1503.

    Google Scholar 

  23. O. D. Sherby and P. M. Burke, Prog. Mater. Sci. 13, 325 (1967).

    Google Scholar 

  24. F.A. Mohamed and T. G. Langdon, Metall. Trans. 5, 2339 (1974).

    Article  CAS  Google Scholar 

  25. S.J. Rothman, N.L. Peterson, L.J. Nowicki, and L.C. Robinson, Phys. Status Solidi B 63, K29 (1974).

    Article  Google Scholar 

  26. S.V. Raj and T.G. Langdon, Acta Metall. 37, 843 (1989).

    Article  CAS  Google Scholar 

  27. D.J. Lloyd and D.M. Moore, in Superplastic Forming of Structural Alloys, edited by N. E. Paton and C. H. Hamilton (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Horita, Z., Furukawa, M. et al. An investigation of ductility and microstructural evolution in an Al−3% Mg alloy with submicron grain size. Journal of Materials Research 8, 2810–2818 (1993). https://doi.org/10.1557/JMR.1993.2810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2810

Navigation